File size: 3,027 Bytes
3629250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dfbe06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3629250
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import librosa
import soundfile as sf
import gradio as gr
import torchaudio
import os

from Amphion.models.ns3_codec import FACodecEncoder, FACodecDecoder

fa_encoder = FACodecEncoder(
    ngf=32,
    up_ratios=[2, 4, 5, 5],
    out_channels=256,
)

fa_decoder = FACodecDecoder(
    in_channels=256,
    upsample_initial_channel=1024,
    ngf=32,
    up_ratios=[5, 5, 4, 2],
    vq_num_q_c=2,
    vq_num_q_p=1,
    vq_num_q_r=3,
    vq_dim=256,
    codebook_dim=8,
    codebook_size_prosody=10,
    codebook_size_content=10,
    codebook_size_residual=10,
    use_gr_x_timbre=True,
    use_gr_residual_f0=True,
    use_gr_residual_phone=True,
)

fa_encoder.load_state_dict(torch.load("ns3_facodec_encoder.bin"))
fa_decoder.load_state_dict(torch.load("ns3_facodec_decoder.bin"))

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
fa_encoder = fa_encoder.to(device)
fa_decoder = fa_decoder.to(device)
fa_encoder.eval()
fa_decoder.eval()


def codec_inference(speech_path):

    with torch.no_grad():

        wav, sr = librosa.load(speech_path, sr=16000)
        wav = torch.tensor(wav).to(device).unsqueeze(0).unsqueeze(0)

        enc_out = fa_encoder(wav)
        vq_post_emb, vq_id, _, quantized, spk_embs = fa_decoder(
            enc_out, eval_vq=False, vq=True
        )
        recon_wav = fa_decoder.inference(vq_post_emb, spk_embs)

    os.makedirs("temp", exist_ok=True)
    result_path = "temp/result.wav"
    sf.write(result_path, recon_wav[0, 0].cpu().numpy(), 16000)

    return result_path


demo_inputs = [
    gr.Audio(
        sources=["upload", "microphone"],
        label="Upload the speech file",
        type="filepath",
    ),
]

demo_outputs = gr.Audio(label="")

demo = gr.Interface(
    fn=codec_inference,
    inputs=demo_inputs,
    outputs=demo_outputs,
    title="NaturalSpeech3 FACodec",
    description=
    """
    ## FACodec: Speech Codec with Attribute Factorization used for NaturalSpeech 3

    [![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/pdf/2403.03100.pdf)

    [![demo](https://img.shields.io/badge/FACodec-Demo-red)](https://speechresearch.github.io/naturalspeech3/)

    [![model](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Models-pink)](https://huggingface.co/amphion/naturalspeech3_facodec)

    ## Overview

    FACodec is a core component of the advanced text-to-speech (TTS) model NaturalSpeech 3. FACodec converts complex speech waveform into disentangled subspaces representing speech attributes of content, prosody, timbre, and acoustic details and reconstruct high-quality speech waveform from these attributes. FACodec decomposes complex speech into subspaces representing different attributes, thus simplifying the modeling of speech representation.

    Research can use FACodec to develop different modes of TTS models, such as non-autoregressive based discrete diffusion (NaturalSpeech 3) or autoregressive models (like VALL-E).
    """,
)

if __name__ == "__main__":
    demo.launch()