File size: 1,209 Bytes
7d98a96
 
 
bc2a9ae
7d98a96
 
3e53610
 
 
 
 
 
 
 
 
 
 
8b4348f
 
3e53610
bc2a9ae
 
8b4348f
7d98a96
 
 
 
 
 
 
a90577f
 
 
 
 
7d98a96
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import gradio as gr
from fastai.vision.all import *
import skimage
import re


def from_csv(x):
  try:
    pattern = '\/([A-Za-z\d]+.jpg)'

    match = re.findall(pattern,str(x))
    # print(match)
    x = df.loc[df['image'] == match[0]]
    # print(x)
    y = x['emotion'].item() # #y=x['label'].values[0] 
    return str(y)
  except:
    # print('check these files')
    # print(x)
    return 0 

learn = load_learner('export.pkl')
  
labels = learn.dls.vocab
def predict(img):
    img = PILImage.create(img)
    pred,pred_idx,probs = learn.predict(img)
    return {labels[i]: float(probs[i]) for i in range(len(labels))}

title = "EMOTIONAL DAMAGE"
description = "Find your true  emotions"
article="<p style='text-align: center'><a href='https://www.linkedin.com/in/ranjith-azad-506201238/' target='_blank'>Linkedin</a></p>"
examples = ['ha.jpg','damu.jpeg','kili.jpg','sad.jpg','fear.jpg','disg.jpg','anger.jpg']
interpretation='default'  
enable_queue=True 

gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=5),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()