File size: 10,495 Bytes
32fbd07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3533dd6
 
 
 
 
 
c3c241a
3533dd6
32fbd07
3533dd6
 
32fbd07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3533dd6
 
32fbd07
 
3533dd6
 
32fbd07
 
3533dd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3611c30
 
 
 
 
 
 
 
3533dd6
3611c30
 
 
 
3533dd6
 
 
 
 
 
 
 
 
 
 
32fbd07
3533dd6
 
 
 
 
 
 
 
 
 
 
32fbd07
 
 
3533dd6
 
32fbd07
 
3533dd6
 
 
 
 
 
 
 
 
 
 
32fbd07
 
 
 
 
 
 
 
 
3611c30
 
 
 
 
32fbd07
3611c30
32fbd07
3611c30
32fbd07
 
 
 
 
 
 
 
 
 
 
 
3611c30
32fbd07
 
 
 
3533dd6
 
32fbd07
 
3533dd6
 
32fbd07
 
 
 
3533dd6
 
32fbd07
 
3533dd6
 
 
 
 
 
 
 
 
 
 
32fbd07
 
 
 
 
 
 
 
3611c30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import pandas as pd
import streamlit as st

import matplotlib.pyplot as plt
import seaborn as sns
import os
import json

from utils import read_reports, dict_to_multindex_df
#add_test_split_stats_from_secret_dataset, dict_to_multindex_df_all_splits
from utils import extract_stats_to_agg, extract_stats_all_splits, extract_stats_for_dataset_card
from constants import BIGOS_INFO, PELCRA_INFO, ABOUT_INFO
from datasets import get_dataset_config_names

# PL ASR BIGOS analysis
# PL ASR Diagnostic analysis
# PELCRA analysis
# TODO - compare the datasets

st.set_page_config(layout="wide")
metrics_size_audio = ["samples", "audio[h]", "speakers"]
metrics_size_text = ["samples", "words", "chars"]
metrics_size = metrics_size_audio + metrics_size_text
metrics_features_text_uniq = ["utts_unique", "words_unique", "chars_unique"]
metrics_features_speech_rate = ["words_per_sec", "chars_per_sec"]
metrics_features_duration = ["average_audio_duration[s]", "average_utterance_length[words]", "average_utterance_length[chars]"]
metrics_features_meta = ["meta_cov_gender", "meta_cov_age"]
metrics_features = metrics_features_text_uniq + metrics_features_speech_rate + metrics_features_duration + metrics_features_meta


about, analysis_bigos, analysis_bigos_diagnostic, analysis_bigos_pelcra = st.tabs(["About BIGOS datasets", "BIGOS V2 analysis", "BIGOS V2 diagnostic", "PELCRA for BIGOS analysis"])
#analysis_bigos_diagnostic
#########################################BIGOS################################################
with about:
    
    st.title("About BIGOS project")
    st.markdown(ABOUT_INFO, unsafe_allow_html=True)
    # TODO - load and display about BIGOS benchmark

with analysis_bigos:
    dataset_name = "amu-cai/pl-asr-bigos-v2"
    dataset_short_name = "BIGOS"
    dataset_version = "V2"
    
    dataset_configs = get_dataset_config_names(dataset_name,trust_remote_code=True)
    # remove "all" subset, which is always the last config type
    dataset_configs.pop()
    print(dataset_configs)
    # read the reports for public and secret datasets
    [stats_dict_public, contents_dict_public] = read_reports(dataset_name)

    # update the metrics for test split with the secret dataset statistics
    #stats_dict_public = add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret)
    df_multindex_for_agg = dict_to_multindex_df(stats_dict_public, all_splits=False)
    df_multindex_all_splits = dict_to_multindex_df(stats_dict_public, all_splits=True)

    # extract metrics from dictionary and convert to various dataframes for easier analysis and visualization
    #st.header("Summary statistics")


    st.header("Dataset level metrics")
    df_sum_stats_agg = extract_stats_to_agg(df_multindex_for_agg, metrics_size)

    # split dataframe into separate dataframes for easier analysis and visualization
    st.subheader("Audio content size")
    df_sum_stats_audio = df_sum_stats_agg[metrics_size_audio]
    st.dataframe(df_sum_stats_audio)
    
    st.subheader("Text content size")
    df_sum_stats_text = df_sum_stats_agg[metrics_size_text]
    st.dataframe(df_sum_stats_text)

    df_sum_stats_all_splits = extract_stats_all_splits(df_multindex_all_splits, metrics_features)

    st.subheader("Utterances, vocabulary and alphabet space")
    df_sum_stats_feats_text = df_sum_stats_all_splits[metrics_features_text_uniq]
    st.dataframe(df_sum_stats_feats_text)

    st.subheader("Speech rates")
    df_sum_stats_feats_speech_rate= df_sum_stats_all_splits[metrics_features_speech_rate]
    st.dataframe(df_sum_stats_feats_speech_rate)

    st.subheader("Average utterance lengths and audio duration")
    df_sum_stats_feats_durations = df_sum_stats_all_splits[metrics_features_duration]
    st.dataframe(df_sum_stats_feats_durations)

    st.subheader("Metadata coverage")
    df_sum_stats_feats_meta = df_sum_stats_all_splits[metrics_features_meta]
    st.dataframe(df_sum_stats_feats_meta)

    st.header("BIGOS subsets (source datasets) cards")
    for subset in dataset_configs:
        st.subheader("Dataset card for: {}".format(subset))
        df_metrics_subset_size = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_size, add_total=True)
        st.dataframe(df_metrics_subset_size)
        df_metrics_subset_features = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_features, add_total=False)
        st.dataframe(df_metrics_subset_features)
    
#########################################PELCRA################################################
with analysis_bigos_pelcra:

    dataset_name = "pelcra/pl-asr-pelcra-for-bigos"
    dataset_short_name = "PELCRA"

    # local version with granted gated access
    #dataset_configs = get_dataset_config_names(dataset_name,trust_remote_code=True)
    # remove "all" subset, which is always the last config type
    #dataset_configs.pop()
    
    # remote version with hardcoded access
    dataset_configs = ['ul-diabiz_poleval-22', 'ul-spokes_mix_emo-18', 'ul-spokes_mix_luz-18', 'ul-spokes_mix_parl-18', 'ul-spokes_biz_bio-23', 'ul-spokes_biz_int-23', 'ul-spokes_biz_luz-23', 'ul-spokes_biz_pod-23', 'ul-spokes_biz_pres-23', 'ul-spokes_biz_vc-23', 'ul-spokes_biz_vc2-23', 'ul-spokes_biz_wyw-23']
    print(dataset_configs)
    # read the reports for public and secret datasets
    [stats_dict_public, contents_dict_public] = read_reports(dataset_name)

    # update the metrics for test split with the secret dataset statistics
    #stats_dict_public = add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret)
    df_multindex_for_agg = dict_to_multindex_df(stats_dict_public, all_splits=False)
    df_multindex_all_splits = dict_to_multindex_df(stats_dict_public, all_splits=True)

    # extract metrics from dictionary and convert to various dataframes for easier analysis and visualization
    #st.header("Summary statistics")

    st.header("Dataset level metrics")
    df_sum_stats_agg = extract_stats_to_agg(df_multindex_for_agg, metrics_size)

    # split dataframe into separate dataframes for easier analysis and visualization
    st.subheader("Audio content size")
    df_sum_stats_audio = df_sum_stats_agg[metrics_size_audio]
    st.dataframe(df_sum_stats_audio)
    
    st.subheader("Text content size")
    df_sum_stats_text = df_sum_stats_agg[metrics_size_text]
    st.dataframe(df_sum_stats_text)

    df_sum_stats_all_splits = extract_stats_all_splits(df_multindex_all_splits, metrics_features)

    st.subheader("Utterances, vocabulary and alphabet space")
    df_sum_stats_feats_text = df_sum_stats_all_splits[metrics_features_text_uniq]
    st.dataframe(df_sum_stats_feats_text)

    st.subheader("Speech rates")
    df_sum_stats_feats_speech_rate= df_sum_stats_all_splits[metrics_features_speech_rate]
    st.dataframe(df_sum_stats_feats_speech_rate)

    st.subheader("Average utterance lengths and audio duration")
    df_sum_stats_feats_durations = df_sum_stats_all_splits[metrics_features_duration]
    st.dataframe(df_sum_stats_feats_durations)

    st.subheader("Metadata coverage")
    df_sum_stats_feats_meta = df_sum_stats_all_splits[metrics_features_meta]
    st.dataframe(df_sum_stats_feats_meta)

    st.header("BIGOS subsets (source datasets) cards")
    for subset in dataset_configs:
        st.subheader("Dataset card for: {}".format(subset))
        df_metrics_subset_size = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_size, add_total=True)
        st.dataframe(df_metrics_subset_size)
        df_metrics_subset_features = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_features, add_total=False)
        st.dataframe(df_metrics_subset_features)

"""
with analysis_bigos_diagnostic:
    dataset_name = "amu-cai/pl-asr-bigos-v2-diagnostic"
    dataset_short_name = "BIGOS diagnostic"
    dataset_version = "V2"
    
    dataset_configs = get_dataset_config_names(dataset_name,trust_remote_code=True)
    # remove "all" subset, which is always the last config type
    dataset_configs.pop()
    print(dataset_configs)
    # read the reports for public and secret datasets
    [stats_dict_public, contents_dict_public] = read_reports(dataset_name)

    # update the metrics for test split with the secret dataset statistics
    #stats_dict_public = add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret)
    df_multindex_for_agg = dict_to_multindex_df(stats_dict_public, all_splits=False)
    df_multindex_all_splits = dict_to_multindex_df(stats_dict_public, all_splits=True)

    # extract metrics from dictionary and convert to various dataframes for easier analysis and visualization
    #st.header("Summary statistics")


    st.header("Dataset level metrics")
    df_sum_stats_agg = extract_stats_to_agg(df_multindex_for_agg, metrics_size)

    # split dataframe into separate dataframes for easier analysis and visualization
    st.subheader("Audio content size")
    df_sum_stats_audio = df_sum_stats_agg[metrics_size_audio]
    st.dataframe(df_sum_stats_audio)
    
    st.subheader("Text content size")
    df_sum_stats_text = df_sum_stats_agg[metrics_size_text]
    st.dataframe(df_sum_stats_text)

    df_sum_stats_all_splits = extract_stats_all_splits(df_multindex_all_splits, metrics_features)

    st.subheader("Utterances, vocabulary and alphabet space")
    df_sum_stats_feats_text = df_sum_stats_all_splits[metrics_features_text_uniq]
    st.dataframe(df_sum_stats_feats_text)

    st.subheader("Speech rates")
    df_sum_stats_feats_speech_rate= df_sum_stats_all_splits[metrics_features_speech_rate]
    st.dataframe(df_sum_stats_feats_speech_rate)

    st.subheader("Average utterance lengths and audio duration")
    df_sum_stats_feats_durations = df_sum_stats_all_splits[metrics_features_duration]
    st.dataframe(df_sum_stats_feats_durations)

    st.subheader("Metadata coverage")
    df_sum_stats_feats_meta = df_sum_stats_all_splits[metrics_features_meta]
    st.dataframe(df_sum_stats_feats_meta)

    st.header("BIGOS subsets (source datasets) cards")
    for subset in dataset_configs:
        st.subheader("Dataset card for: {}".format(subset))
        df_metrics_subset_size = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_size, add_total=True)
        st.dataframe(df_metrics_subset_size)
        df_metrics_subset_features = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_features, add_total=False)
        st.dataframe(df_metrics_subset_features)
"""