Spaces:
Running
Running
File size: 48,386 Bytes
22f3279 37d493c 22f3279 37d493c 22f3279 e86d857 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 bba6ca7 37d493c bba6ca7 37d493c bba6ca7 37d493c 22f3279 37d493c 22f3279 bba6ca7 37d493c bba6ca7 37d493c bba6ca7 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 37d493c 22f3279 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
import os
import streamlit as st
import pandas as pd
from constants import BIGOS_INFO, PELCRA_INFO, ANALYSIS_INFO, ABOUT_INFO, INSPECTION_INFO, COMPARISON_INFO
from utils import read_latest_results, basic_stats_per_dimension, retrieve_asr_systems_meta_from_the_catalog, box_plot_per_dimension,box_plot_per_dimension_subsets, box_plot_per_dimension_with_colors, get_total_audio_duration, check_impact_of_normalization, calculate_wer_per_meta_category, calculate_wer_per_audio_feature
from app_utils import calculate_height_to_display, filter_dataframe
import matplotlib.pyplot as plt
import numpy as np
import statsmodels.api as sm
import seaborn as sns
hf_token = os.getenv('HF_TOKEN')
if hf_token is None:
raise ValueError("HF_TOKEN environment variable is not set. Please check your secrets settings.")
# Tabs
# About (description of the benchmark) - methodology
# Leaderboards
# Interactive analysis
# Acknowledgements
# select the dataset to display results
datasets_secret = [
"amu-cai/pl-asr-bigos-v2-secret",
"pelcra/pl-asr-pelcra-for-bigos-secret"]
datasets_public = []
#["amu-cai/pl-asr-bigos-synth-med"]
#amu-cai/pl-asr-bigos-v2-diagnostic"
st.set_page_config(layout="wide")
about, lead_bigos, lead_pelcra, analysis, interactive_comparison = st.tabs(["About", "ASR Leaderboard - BIGOS corpora", "ASR Leaderboard - PELCRA corpora", "ASR evaluation scenarios", "Interactive comparison of ASR accuracy"])
# "Results inspection""Results inspection"
# inspection
# acknowledgements, changelog, faq, todos = st.columns(4)
#lead_bigos_diagnostic, lead_bigos_synth
cols_to_select_all = ["system", "subset", "ref_type", "norm_type", "SER", "MER", "WER", "CER"]
def plot_performance(systems_to_plot, df_per_system_with_type):
# Get unique subsets
subsets = df_per_system_with_type['subset'].unique()
# Create a color and label map
color_label_map = {
free_system_with_best_wer: ('blue', 'Best Free'),
free_system_with_worst_wer: ('red', 'Worst Free'),
commercial_system_with_best_wer: ('green', 'Best Paid'),
commercial_system_with_worst_wer: ('orange', 'Worst Paid')
}
# Plot the data
fig, ax = plt.subplots(figsize=(14, 7))
bar_width = 0.3
index = np.arange(len(subsets))
for i, system in enumerate(systems_to_plot):
subset_wer = df_per_system_with_type[df_per_system_with_type['system'] == system].set_index('subset')['WER']
color, label = color_label_map[system]
ax.bar(index + i * bar_width, subset_wer.loc[subsets], bar_width, label=label + ' - ' + system, color=color)
# Adding labels and title
ax.set_xlabel('Subset')
ax.set_ylabel('WER (%)')
ax.set_title('Comparison of performance of ASR systems.')
ax.set_xticks(index + bar_width * 1.5)
ax.set_xticklabels(subsets, rotation=90, ha='right')
ax.legend()
st.pyplot(fig)
def round_to_nearest(value, multiple):
return multiple * round(value / multiple)
def create_bar_chart(df, systems, metric, norm_type, ref_type='orig', orientation='vertical'):
df = df[df['norm_type'] == norm_type]
df = df[df['ref_type'] == ref_type]
# Prepare the data for the bar chart
subsets = df['subset'].unique()
num_vars = len(subsets)
bar_width = 0.2 # Width of the bars
fig, ax = plt.subplots(figsize=(10, 10))
max_value_all_systems = 0
for i, system in enumerate(systems):
system_data = df[df['system'] == system]
max_value_for_system = max(system_data[metric])
if max_value_for_system > max_value_all_systems:
max_value_all_systems = round_to_nearest(max_value_for_system + 2, 10)
# Ensure the system data is in the same order as subsets
values = []
for subset in subsets:
subset_value = system_data[system_data['subset'] == subset][metric].values
if len(subset_value) > 0:
values.append(subset_value[0])
else:
values.append(0) # Append 0 if the subset value is missing
if orientation == 'vertical':
# Plot each system's bars with an offset for vertical orientation
x_pos = np.arange(len(subsets)) + i * bar_width
ax.bar(x_pos, values, bar_width, label=system)
# Add value labels
for j, value in enumerate(values):
ax.text(x_pos[j], value + max(values) * 0.03, f'{value}', ha='center', va='bottom',fontsize=6)
else:
# Plot each system's bars with an offset for horizontal orientation
y_pos = np.arange(len(subsets)) + i * bar_width
ax.barh(y_pos, values, bar_width, label=system)
# Add value labels
for j, value in enumerate(values):
ax.text(value + max(values) * 0.03, y_pos[j], f'{value}', ha='left', va='center', fontsize=6)
if orientation == 'vertical':
ax.set_xticks(np.arange(len(subsets)) + bar_width * (len(systems) - 1) / 2)
ax.set_xticklabels(subsets, rotation=45, ha='right')
ax.set_ylabel(metric)
else:
ax.set_yticks(np.arange(len(subsets)) + bar_width * (len(systems) - 1) / 2)
ax.set_yticklabels(subsets)
ax.set_xlabel(metric)
# Add grid values for the vertical and horizontal bar plots
if orientation == 'vertical':
ax.set_yticks(np.linspace(0, max_value_all_systems, 5))
else:
ax.set_xticks(np.linspace(0, max_value_all_systems, 5))
# Put legend on the right side outside of the plot
plt.legend(loc='upper right', bbox_to_anchor=(1.2, 1), shadow=True, ncol=1)
st.pyplot(fig)
def create_radar_plot(df, enable_labels, systems, metric, norm_type, ref_type='orig'):
df = df[df['norm_type'] == norm_type]
df = df[df['ref_type'] == ref_type]
# Prepare the data for the radar plot
#systems = df['system'].unique()
subsets = df['subset'].unique()
num_vars = len(subsets)
angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
angles += angles[:1] # Complete the loop
fig, ax = plt.subplots(figsize=(10, 10), subplot_kw=dict(polar=True))
max_value_all_systems = 0
for system in systems:
system_data = df[df['system'] == system]
max_value_for_system = max(system_data[metric])
if max_value_for_system > max_value_all_systems:
max_value_all_systems = round_to_nearest(max_value_for_system + 2, 10)
# Ensure the system data is in the same order as subsets
values = []
for subset in subsets:
subset_value = system_data[system_data['subset'] == subset][metric].values
if len(subset_value) > 0:
values.append(subset_value[0])
else:
values.append(0) # Append 0 if the subset value is missing
values += values[:1] # Complete the loop
# Plot each system
ax.plot(angles, values, label=system)
ax.fill(angles, values, alpha=0.25)
# Add value labels
for angle, value in zip(angles, values):
ax.text(angle, value + max(values) * 0.01, f'{value}', ha='center', va='center', fontsize=6)
ax.set_xticklabels(subsets)
ax.set_yticks(np.linspace(0, max_value_all_systems, 5))
# put legend at the bottom of the page
plt.legend(loc='upper right', bbox_to_anchor=(1.2, 1), shadow=True, ncol=1)
st.pyplot(fig)
with about:
st.title("AMU Polish ASR Leaderboard")
st.markdown(ABOUT_INFO, unsafe_allow_html=True)
# Table - evaluated systems # TODO - change to concatenated table
dataset = "amu-cai/pl-asr-bigos-v2-secret"
split = "test"
df_per_sample, df_per_dataset = read_latest_results(dataset, split, codename_to_shortname_mapping=None)
evaluated_systems_list = df_per_sample["system"].unique()
#print("ASR systems available in the eval results for dataset {}: ".format(dataset), evaluated_systems_list )
df_evaluated_systems = retrieve_asr_systems_meta_from_the_catalog(evaluated_systems_list)
# drop columns "Included in BIGOS benchmark"
df_evaluated_systems = df_evaluated_systems.drop(columns=["Included in BIGOS benchmark"])
# drop empty rows
df_evaluated_systems = df_evaluated_systems.dropna(how='all')
# drop empty columns
df_evaluated_systems = df_evaluated_systems.dropna(axis=1, how='all')
codename_to_shortname_mapping = dict(zip(df_evaluated_systems["Codename"],df_evaluated_systems["Shortname"]))
#print(codename_to_shortname_mapping)
h_df_systems = calculate_height_to_display(df_evaluated_systems)
df_evaluated_systems_types_and_count = df_evaluated_systems["Type"].value_counts().reset_index()
df_evaluated_systems_types_and_count.columns = ["Type", "Count"]
st.subheader("Evaluated systems:")
st.dataframe(df_evaluated_systems_types_and_count, hide_index=True, use_container_width=False)
#TODO - add info who created the system (company, institution, team, etc.)
# Split into separate tables for free and commercial systems
free_systems = df_evaluated_systems[df_evaluated_systems['Type'] == 'free']
commercial_systems = df_evaluated_systems[df_evaluated_systems['Type'] == 'commercial']
st.subheader("Free systems:")
# drop empty columns
free_systems = free_systems.dropna(axis=1, how='all')
# drop empty rows
free_systems = free_systems.dropna(how='all')
# do not display index
st.dataframe(free_systems, hide_index=True, height = h_df_systems, use_container_width=True)
st.subheader("Commercial systems:")
# drop empty columns
commercial_systems = commercial_systems.dropna(axis=1, how='all')
# do not display index
# drop empty rows
commercial_systems = commercial_systems.dropna(how='all')
st.dataframe(commercial_systems, hide_index=True, height = h_df_systems, use_container_width=True)
# Table - evaluation datasets
# Table - evaluation metrics
# Table - evaluation metadata
# List - references
# List - contact points
# List - acknowledgements
# List - changelog
# List - FAQ
# List - TODOs
with lead_bigos:
st.title("BIGOS Leaderboard")
st.markdown(BIGOS_INFO, unsafe_allow_html=True)
# configuration for tab
dataset = "amu-cai/pl-asr-bigos-v2-secret"
dataset_short_name = "BIGOS"
dataset_version = "V2"
eval_date = "March 2024"
split = "test"
norm_type = "all"
ref_type = "orig"
# common, reusable part for all tabs presenting leaderboards for specific datasets
#### DATA LOADING AND AUGMENTATION ####
df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping)
# filter only the ref_type and norm_type we want to analyze
df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)]
# filter only the ref_type and norm_type we want to analyze
df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)]
##### PARAMETERS CALCULATION ####
evaluated_systems_list = df_per_sample["system"].unique()
no_of_evaluated_systems = len(evaluated_systems_list)
no_of_eval_subsets = len(df_per_dataset["subset"].unique())
no_of_test_cases = len(df_per_sample)
no_of_unique_recordings = len(df_per_sample["id"].unique())
total_audio_duration_hours = get_total_audio_duration(df_per_sample)
no_of_unique_speakers = len(df_per_sample["speaker_id"].unique())
df_per_dataset_with_asr_systems_meta = pd.merge(df_per_dataset, df_evaluated_systems, how="left", left_on="system", right_on="Shortname")
print(df_per_dataset_with_asr_systems_meta.sample(5))
# save sample to tsv
df_per_dataset_with_asr_systems_meta.sample(5).to_csv("sample.tsv", sep="\t", index=False)
########### EVALUATION PARAMETERS PRESENTATION ################
st.title("ASR leaderboard for dataset: {} {}".format(dataset_short_name, dataset_version))
# MOST IMPORTANT RESULTS
analysis_dim = "system"
metric = "WER"
st.subheader("Leaderboard - Median {} per ASR {} across all subsets of {} dataset".format(metric, analysis_dim, dataset_short_name))
fig = box_plot_per_dimension_with_colors(df_per_dataset_with_asr_systems_meta, metric, analysis_dim, "{} per {} for dataset {}".format(metric, analysis_dim, dataset_short_name), analysis_dim, metric + "[%]","System", "Type")
st.pyplot(fig, clear_figure=True, use_container_width=True)
st.header("Benchmark details")
st.markdown("**Evaluation date:** {}".format(eval_date))
st.markdown("**Number of evaluated system-model variants:** {}".format(no_of_evaluated_systems))
st.markdown("**Number of evaluated subsets:** {}".format(no_of_eval_subsets))
st.markdown("**Number of evaluated system-model-subsets combinations**: {}".format(len(df_per_dataset)))
st.markdown("**Number of unique speakers**: {}".format(no_of_unique_speakers))
st.markdown("**Number of unique recordings used for evaluation:** {}".format(no_of_unique_recordings))
st.markdown("**Total size of the dataset:** {:.2f} hours".format(total_audio_duration_hours))
st.markdown("**Total number of test cases (audio-hypothesis pairs):** {}".format(no_of_test_cases))
st.markdown("**Dataset:** {}".format(dataset))
st.markdown("**Dataset version:** {}".format(dataset_version))
st.markdown("**Split:** {}".format(split))
st.markdown("**Text reference type:** {}".format(ref_type))
st.markdown("**Normalization steps:** {}".format(norm_type))
########### RESULTS ################
st.header("WER (Word Error Rate) analysis")
st.subheader("Average WER for the whole dataset")
df_wer_avg = basic_stats_per_dimension(df_per_dataset, "WER", "dataset")
st.dataframe(df_wer_avg)
st.subheader("Comparison of average WER for free and commercial systems")
df_wer_avg_free_commercial = basic_stats_per_dimension(df_per_dataset_with_asr_systems_meta, "WER", "Type")
st.dataframe(df_wer_avg_free_commercial)
##################### PER SYSTEM ANALYSIS #########################
analysis_dim = "system"
metric = "WER"
st.subheader("Table showing {} per {} sorted by median values".format(metric, analysis_dim))
df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim)
h_df_per_system_per_dataset = calculate_height_to_display(df_wer_per_system_from_per_dataset)
st.dataframe(df_wer_per_system_from_per_dataset, height = h_df_per_system_per_dataset )
##################### PER SUBSET ANALYSIS #########################
analysis_dim = "subset"
metric = "WER"
st.subheader("Table showing {} per {} sorted by median values".format(metric, analysis_dim))
df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim)
h_df_per_system_per_dataset = calculate_height_to_display(df_wer_per_system_from_per_dataset)
st.dataframe(df_wer_per_system_from_per_dataset, height = h_df_per_system_per_dataset )
st.subheader("Boxplot showing {} per {} sorted by median values".format(metric, analysis_dim))
fig = box_plot_per_dimension_subsets(df_per_dataset, metric, analysis_dim, "{} per {} for dataset {}".format(metric, analysis_dim, dataset_short_name), analysis_dim +' of dataset ' + dataset_short_name , metric + " (%)", "system")
st.pyplot(fig, clear_figure=True, use_container_width=True)
### IMPACT OF NORMALIZATION ON ERROR RATES #####
# Calculate the average impact of various norm_types for all datasets and systems
df_per_dataset_selected_cols = df_per_dataset_all[cols_to_select_all]
diff_in_metrics = check_impact_of_normalization(df_per_dataset_selected_cols)
st.subheader("Impact of normalization of references and hypothesis on evaluation metrics")
st.dataframe(diff_in_metrics, use_container_width=False)
# Visualizing the differences in metrics graphically with data labels
# Visualizing the differences in metrics graphically with data labels
fig, axs = plt.subplots(3, 2, figsize=(12, 12))
fig.subplots_adjust(hspace=0.6, wspace=0.6)
#remove the sixth subplot
fig.delaxes(axs[2,1])
metrics = ['SER', 'WER', 'MER', 'CER', "Average"]
colors = ['blue', 'orange', 'green', 'red', 'purple']
for ax, metric, color in zip(axs.flatten(), metrics, colors):
bars = ax.bar(diff_in_metrics.index, diff_in_metrics[metric], color=color)
ax.set_title(f'Normalization impact on {metric}')
if metric == 'Average':
ax.set_title('Average normalization impact on all metrics')
ax.set_xlabel('Normalization Type')
ax.set_ylabel(f'Difference in {metric}')
ax.grid(True)
ax.set_xticklabels(diff_in_metrics.index, rotation=45, ha='right')
min_val = diff_in_metrics[metric].min()
ax.set_ylim([min_val * 1.1, diff_in_metrics[metric].max() * 1.1])
for bar in bars:
height = bar.get_height()
ax.annotate(f'{height:.2f}',
xy=(bar.get_x() + bar.get_width() / 2, height),
xytext=(0, -12), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom')
# Display the plot in Streamlit
st.pyplot(fig)
##################### APPENDIX #########################
st.header("Appendix - Full evaluation results per subset for all evaluated systems")
# select only the columns we want to plot
st.dataframe(df_per_dataset_selected_cols, hide_index=True, use_container_width=False)
with lead_pelcra:
st.title("PELCRA Leaderboard")
st.markdown(PELCRA_INFO, unsafe_allow_html=True)
# configuration for tab
dataset = "pelcra/pl-asr-pelcra-for-bigos-secret"
dataset_short_name = "PELCRA"
dataset_version = "V1"
eval_date = "March 2024"
split = "test"
norm_type = "all"
ref_type = "orig"
# common, reusable part for all tabs presenting leaderboards for specific datasets
#### DATA LOADING AND AUGMENTATION ####
df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping)
# filter only the ref_type and norm_type we want to analyze
df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)]
# filter only the ref_type and norm_type we want to analyze
df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)]
##### PARAMETERS CALCULATION ####
evaluated_systems_list = df_per_sample["system"].unique()
no_of_evaluated_systems = len(evaluated_systems_list)
no_of_eval_subsets = len(df_per_dataset["subset"].unique())
no_of_test_cases = len(df_per_sample)
no_of_unique_recordings = len(df_per_sample["id"].unique())
total_audio_duration_hours = get_total_audio_duration(df_per_sample)
no_of_unique_speakers = len(df_per_sample["speaker_id"].unique())
df_per_dataset_with_asr_systems_meta = pd.merge(df_per_dataset, df_evaluated_systems, how="left", left_on="system", right_on="Shortname")
# MOST IMPORTANT RESULTS
analysis_dim = "system"
metric = "WER"
st.subheader("Leaderboard - Median {} per ASR {} across all subsets of {} dataset".format(metric, analysis_dim, dataset_short_name))
fig = box_plot_per_dimension_with_colors(df_per_dataset_with_asr_systems_meta, metric, analysis_dim, "{} per {}".format(metric, analysis_dim), analysis_dim, metric + "[%]","System", "Type")
st.pyplot(fig, clear_figure=True, use_container_width=True)
st.header("Benchmark details")
st.markdown("**Evaluation date:** {}".format(eval_date))
st.markdown("**Number of evaluated system-model variants:** {}".format(no_of_evaluated_systems))
st.markdown("**Number of evaluated subsets:** {}".format(no_of_eval_subsets))
st.markdown("**Number of evaluated system-model-subsets combinations**: {}".format(len(df_per_dataset)))
st.markdown("**Number of unique speakers**: {}".format(no_of_unique_speakers))
st.markdown("**Number of unique recordings used for evaluation:** {}".format(no_of_unique_recordings))
st.markdown("**Total size of the dataset:** {:.2f} hours".format(total_audio_duration_hours))
st.markdown("**Total number of test cases (audio-hypothesis pairs):** {}".format(no_of_test_cases))
st.markdown("**Dataset:** {}".format(dataset))
st.markdown("**Dataset version:** {}".format(dataset_version))
st.markdown("**Split:** {}".format(split))
st.markdown("**Text reference type:** {}".format(ref_type))
st.markdown("**Normalization steps:** {}".format(norm_type))
########### RESULTS ################
st.header("WER (Word Error Rate) analysis")
st.subheader("Average WER for the whole dataset")
df_wer_avg = basic_stats_per_dimension(df_per_dataset, "WER", "dataset")
st.dataframe(df_wer_avg)
st.subheader("Comparison of average WER for free and commercial systems")
df_wer_avg_free_commercial = basic_stats_per_dimension(df_per_dataset_with_asr_systems_meta, "WER", "Type")
st.dataframe(df_wer_avg_free_commercial)
##################### PER SYSTEM ANALYSIS #########################
analysis_dim = "system"
metric = "WER"
st.subheader("Table showing {} per {} sorted by median values".format(metric, analysis_dim))
df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim)
h_df_per_system_per_dataset = calculate_height_to_display(df_wer_per_system_from_per_dataset)
st.dataframe(df_wer_per_system_from_per_dataset, height = h_df_per_system_per_dataset )
##################### PER SUBSET ANALYSIS #########################
analysis_dim = "subset"
metric = "WER"
st.subheader("Table showing {} per {} sorted by median values".format(metric, analysis_dim))
df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim)
h_df_per_system_per_dataset = calculate_height_to_display(df_wer_per_system_from_per_dataset)
st.dataframe(df_wer_per_system_from_per_dataset, height = h_df_per_system_per_dataset )
st.subheader("Boxplot showing {} per {} sorted by median values".format(metric, analysis_dim))
fig = box_plot_per_dimension_subsets(df_per_dataset, metric, analysis_dim, "{} per {} for dataset {}".format(metric, analysis_dim, dataset_short_name), analysis_dim +' of dataset ' + dataset_short_name , metric + " (%)", "system")
st.pyplot(fig, clear_figure=True, use_container_width=True)
### IMPACT OF NORMALIZATION ON ERROR RATES #####
# Calculate the average impact of various norm_types for all datasets and systems
df_per_dataset_selected_cols = df_per_dataset_all[cols_to_select_all]
diff_in_metrics = check_impact_of_normalization(df_per_dataset_selected_cols)
st.subheader("Impact of normalization on WER")
st.dataframe(diff_in_metrics, use_container_width=False)
# Visualizing the differences in metrics graphically with data labels
# Visualizing the differences in metrics graphically with data labels
fig, axs = plt.subplots(3, 2, figsize=(12, 12))
fig.subplots_adjust(hspace=0.6, wspace=0.6)
#remove the sixth subplot
fig.delaxes(axs[2,1])
metrics = ['SER', 'WER', 'MER', 'CER', "Average"]
colors = ['blue', 'orange', 'green', 'red', 'purple']
for ax, metric, color in zip(axs.flatten(), metrics, colors):
bars = ax.bar(diff_in_metrics.index, diff_in_metrics[metric], color=color)
ax.set_title(f'Normalization impact on {metric}')
if metric == 'Average':
ax.set_title('Average normalization impact on all metrics')
ax.set_xlabel('Normalization Type')
ax.set_ylabel(f'Difference in {metric}')
ax.grid(True)
ax.set_xticklabels(diff_in_metrics.index, rotation=45, ha='right')
min_val = diff_in_metrics[metric].min()
ax.set_ylim([min_val * 1.1, diff_in_metrics[metric].max() * 1.1])
for bar in bars:
height = bar.get_height()
ax.annotate(f'{height:.2f}',
xy=(bar.get_x() + bar.get_width() / 2, height),
xytext=(0, -12), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom')
# Display the plot in Streamlit
st.pyplot(fig)
##################### APPENDIX #########################
st.header("Appendix - Full evaluation results per subset for all evaluated systems")
# select only the columns we want to plot
df_per_dataset_selected_cols = df_per_dataset_all[cols_to_select_all]
st.dataframe(df_per_dataset_selected_cols, hide_index=True, use_container_width=False)
with analysis:
datasets = datasets_secret + datasets_public
dataset = st.selectbox("Select Dataset", datasets, index=datasets.index('amu-cai/pl-asr-bigos-v2-secret'), key="select_dataset_scenarios")
if dataset == "amu-cai/pl-asr-bigos-v2-secret":
dataset_short_name = "BIGOS"
elif dataset == "pelcra/pl-asr-pelcra-for-bigos-secret":
dataset_short_name = "PELCRA"
else:
dataset_short_name = "UNKNOWN"
# read the latest results for the selected dataset
print("Reading the latest results for dataset: ", dataset)
df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping)
# filter only the ref_type and norm_type we want to analyze
df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)]
# filter only the ref_type and norm_type we want to analyze
df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)]
evaluated_systems_list = df_per_sample["system"].unique()
print(evaluated_systems_list)
df_evaluated_systems = retrieve_asr_systems_meta_from_the_catalog(evaluated_systems_list)
print(df_evaluated_systems)
##### ANALYSIS - COMMERCIAL VS FREE SYSTEMS #####
# Generate dataframe with columns as follows System Type Subset Avg_WER
df_per_dataset_with_asr_systems_meta = pd.merge(df_per_dataset, df_evaluated_systems, how="left", left_on="system", right_on="Shortname")
df_wer_avg_per_system_all_subsets_with_type = df_per_dataset_with_asr_systems_meta.groupby(['system', 'Type', 'subset'])['WER'].mean().reset_index()
print(df_wer_avg_per_system_all_subsets_with_type)
# Select the best and worse system for free and commercial systems
free_systems = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['Type'] == 'free']['system'].unique()
commercial_systems = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['Type'] == 'commercial']['system'].unique()
free_system_with_best_wer = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['system'].isin(free_systems)].groupby('system')['WER'].mean().idxmin()
free_system_with_worst_wer = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['system'].isin(free_systems)].groupby('system')['WER'].mean().idxmax()
commercial_system_with_best_wer = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['system'].isin(commercial_systems)].groupby('system')['WER'].mean().idxmin()
commercial_system_with_worst_wer = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['system'].isin(commercial_systems)].groupby('system')['WER'].mean().idxmax()
#print(f"Best free system: {free_system_with_best_wer}")
#print(f"Worst free system: {free_system_with_worst_wer}")
#print(f"Best commercial system: {commercial_system_with_best_wer}")
#print(f"Worst commercial system: {commercial_system_with_worst_wer}")
st.subheader("Comparison of WER for free and commercial systems")
# Best and worst system for free and commercial systems - print table
header = ["Type", "Best System", "Worst System"]
data = [
["Free", free_system_with_best_wer, free_system_with_worst_wer],
["Commercial", commercial_system_with_best_wer, commercial_system_with_worst_wer]
]
st.subheader("Best and worst systems for dataset {}".format(dataset))
df_best_worse_systems = pd.DataFrame(data, columns=header)
# do not display index
st.dataframe(df_best_worse_systems, hide_index=True)
st.subheader("Comparison of average WER for best systems")
df_per_dataset_best_systems = df_per_dataset_with_asr_systems_meta[df_per_dataset_with_asr_systems_meta['system'].isin([free_system_with_best_wer, commercial_system_with_best_wer])]
df_wer_avg_best_free_commercial = basic_stats_per_dimension(df_per_dataset_best_systems, "WER", "Type")
st.dataframe(df_wer_avg_best_free_commercial)
# Create lookup table to get system type based on its name
#system_type_lookup = dict(zip(df_wer_avg_per_system_all_subsets_with_type['system'], df_wer_avg_per_system_all_subsets_with_type['Type']))
systems_to_plot_best= [free_system_with_best_wer, commercial_system_with_best_wer]
plot_performance(systems_to_plot_best, df_wer_avg_per_system_all_subsets_with_type)
st.subheader("Comparison of average WER for the worst systems")
df_per_dataset_worst_systems = df_per_dataset_with_asr_systems_meta[df_per_dataset_with_asr_systems_meta['system'].isin([free_system_with_worst_wer, commercial_system_with_worst_wer])]
df_wer_avg_worst_free_commercial = basic_stats_per_dimension(df_per_dataset_worst_systems, "WER", "Type")
st.dataframe(df_wer_avg_worst_free_commercial)
systems_to_plot_worst=[free_system_with_worst_wer, commercial_system_with_worst_wer]
plot_performance(systems_to_plot_worst, df_wer_avg_per_system_all_subsets_with_type)
# WER in function of model size
st.subheader("WER in function of model size for dataset {}".format(dataset))
# select only free systems for the analysis from df_wer_avg_per_system_all_subsets_with_type dataframe
free_systems_wer_per_subset = df_per_dataset_with_asr_systems_meta.groupby(['system', 'Parameters [M]', 'subset'])['WER'].mean().reset_index()
# sort by model size
# change column type Parameters [M] to integer
free_systems_wer_per_subset['Parameters [M]'] = free_systems_wer_per_subset['Parameters [M]'].astype(int)
free_systems_wer_per_subset = free_systems_wer_per_subset.sort_values(by='Parameters [M]')
free_systems_wer_average_across_all_subsets = free_systems_wer_per_subset.groupby(['system', 'Parameters [M]'])['WER'].mean().reset_index()
# change column type Parameters [M] to integer
free_systems_wer_average_across_all_subsets['Parameters [M]'] = free_systems_wer_average_across_all_subsets['Parameters [M]'].astype(int)
# sort by model size
free_systems_wer_average_across_all_subsets = free_systems_wer_average_across_all_subsets.sort_values(by='Parameters [M]')
free_systems_wer = free_systems_wer_average_across_all_subsets
# use system name as index
free_systems_wer_to_show = free_systems_wer.set_index('system')
# sort by WER and round WER by value to 2 decimal places
free_systems_wer_to_show = free_systems_wer_to_show.sort_values(by='WER').round({'WER': 2})
# print dataframe in streamlit with average WER, system name and model size
st.dataframe(free_systems_wer_to_show)
# plot scatter plot with values of WER
# X axis is the model size (parameters [M])
# Y is thw average WER
# make each point a different color
# provide legend with system names
fig, ax = plt.subplots(figsize=(10, 7))
# Define larger jitter for close points
jitter_x = 5
jitter_y = 0.2
# Alternate marker shapes to distinguish overlapping points
marker_styles = ['o', 's', 'D', '^', 'v', '<', '>'] # Circle, square, diamond, and other shapes
marker_dict = {system: marker_styles[i % len(marker_styles)] for i, system in enumerate(free_systems_wer['system'].unique())}
for system in free_systems_wer['system'].unique():
subset = free_systems_wer[free_systems_wer['system'] == system]
marker_style = marker_dict[system]
# Scatter plot with distinct marker shapes for each system
ax.scatter(
subset['Parameters [M]'] + jitter_x * (np.random.rand(len(subset)) - 0.5), # Apply jitter to x for overlap
subset['WER'] + jitter_y * (np.random.rand(len(subset)) - 0.5), # Apply jitter to y for overlap
label=system, s=100, alpha=0.7, edgecolor='black', marker=marker_style
)
# Add text annotations with dynamic positioning to avoid overlap with y-axis
for i, point in subset.iterrows():
# Adjust position to avoid overlap with y-axis
x_offset = 10 if point['Parameters [M]'] < 50 else -10 if i % 2 == 1 else 10 # Push right if close to y-axis
y_offset = -0.5 if i % 2 == 0 else 0.5 # Alternate vertical offset
ax.annotate(
point['system'],
(point['Parameters [M]'], point['WER']),
textcoords="offset points",
xytext=(x_offset, y_offset),
ha='right' if x_offset < 0 else 'left',
fontsize=10,
bbox=dict(boxstyle="round,pad=0.3", edgecolor='white', facecolor='white', alpha=0.7)
)
# Set axis labels and title
ax.set_xlabel('Model Size [M Parameters]', fontsize=12)
ax.set_ylabel('WER (%)', fontsize=12)
ax.set_title(f'WER vs. Model Size for Dataset {dataset_short_name}', fontsize=14, pad=20)
# Adjust legend settings to fit outside the main plot area
ax.legend(
title='System', bbox_to_anchor=(0.8, 1), loc='upper left',
fontsize=8, title_fontsize=9, frameon=True, shadow=False, facecolor='white')
#)
# Add grid lines and minor ticks for better readability
ax.grid(True, linestyle='--', alpha=0.5)
ax.minorticks_on()
ax.tick_params(which='both', direction='in', top=True, right=True)
# increase granularity of y-axis to 20 points per whole range
# Set y-axis limits: lower bound at 0, upper bound to next highest multiple of 5
y_min = 0
y_max = ax.get_ylim()[1] # Get the current maximum y value
y_max_rounded = np.ceil(y_max / 5) * 5 # Round y_max up to the next highest multiple of 5
ax.set_ylim(y_min, y_max_rounded)
# Improve layout spacing
plt.tight_layout()
# Display the plot
st.pyplot(fig)
##################################################################################################################################################
# WER per audio duration
# calculate average WER per audio duration bucket for the best and worse commercial and free systems
selected_systems = [free_system_with_best_wer, commercial_system_with_best_wer]
# filter out results for selected systems
df_per_sample_selected_systems = df_per_sample[df_per_sample['system'].isin(selected_systems)]
# calculate average WER per audio duration for the best system
# add column with audio duration in seconds rounded to nearest integer value.
audio_duration_buckets = [1,2,3,4,5,10,15,20,30,40,50,60]
# map audio duration to the closest bucket
df_per_sample_selected_systems['audio_duration_buckets'] = df_per_sample_selected_systems['audio_duration'].apply(lambda x: min(audio_duration_buckets, key=lambda y: abs(x-y)))
# calculate average WER per audio duration bucket
df_per_sample_wer_audio = df_per_sample_selected_systems.groupby(['system', 'audio_duration_buckets'])['WER'].mean().reset_index()
# add column with number of samples for specific audio bucket size
df_per_sample_wer_audio['number_of_samples'] = df_per_sample_selected_systems.groupby(['system', 'audio_duration_buckets'])['WER'].count().values
df_per_sample_wer_audio = df_per_sample_wer_audio.sort_values(by='audio_duration_buckets')
# round values in WER column in df_per_sample_wer to 2 decimal places
df_per_sample_wer_audio['WER'].round(2)
# transform df_per_sample_wer. Use system values as columns, while audio_duration_buckets as main index
df_per_sample_wer_audio_pivot = df_per_sample_wer_audio.pivot(index='audio_duration_buckets', columns='system', values='WER')
df_per_sample_wer_audio_pivot = df_per_sample_wer_audio_pivot.round(2)
df_per_sample_wer_audio_pivot['number_of_samples'] = df_per_sample_wer_audio[df_per_sample_wer_audio['system']==free_system_with_best_wer].groupby('audio_duration_buckets')['number_of_samples'].sum().values
# put number_of_samples as the first column after index
df_per_sample_wer_audio_pivot = df_per_sample_wer_audio_pivot[['number_of_samples'] + [col for col in df_per_sample_wer_audio_pivot.columns if col != 'number_of_samples']]
# print dataframe in streamlit
st.dataframe(df_per_sample_wer_audio_pivot)
# create scatter plot with WER in function of audio duration
fig, ax = plt.subplots()
for system in selected_systems:
subset = df_per_sample_wer_audio[df_per_sample_wer_audio['system'] == system]
ax.scatter(subset['audio_duration_buckets'], subset['WER'], label=system, s=subset['number_of_samples']*0.5)
ax.set_xlabel('Audio Duration [s]')
ax.set_ylabel('WER (%)')
ax.set_title('WER in function of audio duration.')
# place legend outside the plot on the right
ax.legend(title='System', bbox_to_anchor=(1.05, 1), loc='upper left')
st.pyplot(fig)
##################################################################################################################################################
# WER per speech rate
# speech rate chars unique values
audio_feature_to_analyze = 'speech_rate_words'
audio_feature_unit = ' [words/s]'
metric = 'WER'
metric_unit = ' (%)'
no_of_buckets = 10
# calculate average WER per audio duration bucket for the best and worse commercial and free systems
selected_systems = [free_system_with_best_wer, commercial_system_with_best_wer]
df_per_sample_wer_feature_pivot, df_per_sample_wer_feature = calculate_wer_per_audio_feature(df_per_sample, selected_systems, audio_feature_to_analyze, metric, no_of_buckets)
# print dataframe in streamlit
st.dataframe(df_per_sample_wer_feature_pivot)
# Set a threshold to remove outliers - here we use the 97th percentile of WER
threshold = df_per_sample_wer_feature[metric].quantile(0.97)
# Remove data points with WER greater than the threshold
filtered_df = df_per_sample_wer_feature[df_per_sample_wer_feature[metric] <= threshold]
# Create figure and axis with larger size
fig, ax = plt.subplots(figsize=(10, 7))
# Scatter plot for each system
for system in selected_systems:
subset = filtered_df[filtered_df['system'] == system]
ax.scatter(subset[audio_feature_to_analyze],
subset[metric],
label=system,
s=subset['number_of_samples'] * 0.5,
alpha=0.6) # Set alpha for better visibility of overlapping points
# Adding a trend line using LOWESS
lowess = sm.nonparametric.lowess
trend = lowess(subset[metric], subset[audio_feature_to_analyze], frac=0.3) # Adjust frac to control smoothing
ax.plot(trend[:, 0], trend[:, 1], label=f'{system} Trend', linestyle='-', linewidth=2)
# Set axis labels with improved formatting for readability
ax.set_xlabel(audio_feature_to_analyze.replace('_', ' ').capitalize() + ' ' + audio_feature_unit )
ax.set_ylabel(metric + ' ' + metric_unit )
# Set an improved title that is more informative
ax.set_title('Word Error Rate (WER) vs Speech Rate\nBest Performing Free and Paid Systems', fontsize=14)
# increase granularity of y-axis to 20 points per whole range
# Set y-axis limits: lower bound at 0, upper bound to next highest multiple of 5
y_min = 0
y_max = ax.get_ylim()[1] # Get the current maximum y value
y_max_rounded = np.ceil(y_max / 5) * 5 # Round y_max up to the next highest multiple of 5
ax.set_ylim(y_min, y_max_rounded)
# Add a grid to improve readability and alignment
ax.grid(True, linestyle='--', alpha=0.7)
# Place legend outside the plot area to prevent overlapping with data points
ax.legend(title='System', loc='upper right', bbox_to_anchor=(0.95, 1))
# Add tight layout to improve spacing between elements
fig.tight_layout()
# Display the plot
st.pyplot(fig)
################################################################################################################################################
# WER PER GENDER
#selected_systems = [free_system_with_best_wer, commercial_system_with_best_wer, free_system_with_worst_wer, commercial_system_with_worst_wer]
selected_systems = df_per_sample['system'].unique()
df_per_sample_wer_gender_pivot, df_available_samples_per_category_per_system, no_samples_per_category = calculate_wer_per_meta_category(df_per_sample, selected_systems, 'WER', 'speaker_gender')
#print(df_per_sample_wer_gender_pivot)
#print(no_samples_per_category)
# print dataframe in streamlit
st.write("Number of samples per category")
for system in selected_systems:
st.write(f"System: {system}")
df_available_samples_per_category = df_available_samples_per_category_per_system[system]
st.dataframe(df_available_samples_per_category)
st.write("Number of samples analyzed per category - {}".format(no_samples_per_category))
st.dataframe(df_per_sample_wer_gender_pivot)
#print(difference_values)
#print(selected_systems)
# create the scatter plot
# the x axis should be the systems from selected_systems
# the y axis should be the difference from difference_values
# each system should have a different color
fig, ax = plt.subplots()
difference_values = df_per_sample_wer_gender_pivot['Difference'][:-3]
selected_systems = df_per_sample_wer_gender_pivot.index[:-3]
ax.scatter(difference_values, selected_systems, c=range(len(selected_systems)), cmap='viridis')
ax.set_ylabel('ASR System')
ax.set_xlabel('Difference in WER across speaker gender')
ax.set_title('ASR systems perfomance bias for genders.')
# add labels with difference in WER values
for i, txt in enumerate(difference_values):
ax.annotate(txt, (difference_values[i], selected_systems[i]), fontsize=5, ha='right')
st.pyplot(fig)
#####################################################################################################################################################################################
# WER per age
df_per_sample_wer_age_pivot, df_available_samples_per_category_per_system, no_samples_per_category = calculate_wer_per_meta_category(df_per_sample, selected_systems,'WER','speaker_age')
#print(df_per_sample_wer_age_pivot)
#print(no_samples_per_category)
# print dataframe in streamlit
st.write("Number of samples per category")
for system in selected_systems:
st.write(f"System: {system}")
df_available_samples_per_category = df_available_samples_per_category_per_system[system]
st.dataframe(df_available_samples_per_category)
st.write("Number of samples analyzed per category - {}".format(no_samples_per_category))
st.write("WER per age")
st.dataframe(df_per_sample_wer_age_pivot)
# extract columns from df_per_sample_wer_age_pivot for selected_systems (skip the last 3 values corresponding to median, average and std values)
#print(selected_systems)
# create the scatter plot
# the x axis should be the systems from selected_systems
# the y axis should be the difference from difference_values
# each system should have a different color
fig, ax = plt.subplots()
difference_values = df_per_sample_wer_age_pivot['Std Dev'][:-3]
selected_systems = df_per_sample_wer_age_pivot.index[:-3]
ax.scatter(difference_values,selected_systems , c=range(len(selected_systems)), cmap='viridis')
ax.set_ylabel('ASR System')
ax.set_xlabel('Standard Deviation in WER across speaker age')
ax.set_title('ASR systems perfomance bias for age groups')
# add labels with difference in WER values
for i, txt in enumerate(difference_values):
ax.annotate(txt, (difference_values[i], selected_systems[i]), fontsize=5, ha='right')
st.pyplot(fig)
# READ vs CONVERSIONAL SPEECH AVERAGE WER
# Hallucinations rate per system
with interactive_comparison:
st.title("Interactive comparison of ASR Systems performance")
st.markdown(COMPARISON_INFO, unsafe_allow_html=True)
st.title("Plots for analyzing ASR Systems performance")
datasets = datasets_secret + datasets_public
dataset = st.selectbox("Select Dataset", datasets, index=datasets.index('amu-cai/pl-asr-bigos-v2-secret'), key="select_dataset_interactive_comparison")
# read the latest results for the selected dataset
print("Reading the latest results for dataset: ", dataset)
df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping)
# filter only the ref_type and norm_type we want to analyze
df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)]
# filter only the ref_type and norm_type we want to analyze
df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)]
evaluated_systems_list = df_per_sample["system"].unique()
print(evaluated_systems_list)
df_evaluated_systems = retrieve_asr_systems_meta_from_the_catalog(evaluated_systems_list)
print(df_evaluated_systems)
# read available options to analyze for specific dataset
splits = list(df_per_dataset_all['subset'].unique()) # Get the unique splits
norm_types = list(df_per_dataset_all['norm_type'].unique()) # Get the unique norm_types
ref_types = list(df_per_dataset_all['ref_type'].unique()) # Get the unique ref_types
systems = list(df_per_dataset_all['system'].unique()) # Get the unique systems
metrics = list(df_per_dataset_all.columns[7:]) # Get the unique metrics
# Select the system to display. More than 1 system can be selected.
systems_selected = st.multiselect("Select ASR Systems", systems)
# Select the metric to display
metric = st.selectbox("Select Metric", metrics, index=metrics.index('WER'))
# Select the normalization type
norm_type = st.selectbox("Select Normalization Type", norm_types, index=norm_types.index('all'))
# Select the reference type
ref_type = st.selectbox("Select Reference Type", ref_types, index=ref_types.index('orig'))
enable_labels = st.checkbox("Enable labels on radar plot", value=True)
enable_bar_chart = st.checkbox("Enable bar chart", value=True)
enable_polar_plot = st.checkbox("Enable radar plot", value=True)
orientation = st.selectbox("Select orientation", ["vertical", "horizontal"], index=0)
if enable_polar_plot:
if metric:
if systems_selected:
create_radar_plot(df_per_dataset_all, enable_labels, systems_selected, metric, norm_type, ref_type)
if enable_bar_chart:
if metric:
if systems_selected:
create_bar_chart(df_per_dataset_all, systems_selected , metric, norm_type, ref_type, orientation)
|