File size: 48,386 Bytes
22f3279
 
 
 
37d493c
22f3279
 
 
37d493c
 
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86d857
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d493c
22f3279
 
 
 
 
 
 
 
 
 
37d493c
 
 
 
 
 
 
22f3279
 
 
 
 
 
 
37d493c
22f3279
 
 
 
37d493c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f3279
 
 
 
 
 
 
 
 
 
 
 
37d493c
 
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bba6ca7
 
 
 
37d493c
 
 
bba6ca7
 
 
37d493c
 
bba6ca7
 
37d493c
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d493c
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bba6ca7
37d493c
bba6ca7
 
37d493c
bba6ca7
 
37d493c
 
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d493c
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d493c
 
 
 
 
 
 
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d493c
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d493c
 
 
 
 
 
 
 
 
 
22f3279
 
37d493c
 
 
 
 
 
 
 
 
 
22f3279
37d493c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f3279
37d493c
22f3279
 
37d493c
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d493c
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d493c
22f3279
 
 
 
 
 
 
 
 
37d493c
 
 
 
 
 
 
 
 
 
22f3279
37d493c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f3279
37d493c
 
 
 
 
 
 
 
 
 
22f3279
 
 
37d493c
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
import os
import streamlit as st
import pandas as pd
from constants import BIGOS_INFO, PELCRA_INFO, ANALYSIS_INFO, ABOUT_INFO, INSPECTION_INFO, COMPARISON_INFO
from utils import read_latest_results, basic_stats_per_dimension, retrieve_asr_systems_meta_from_the_catalog, box_plot_per_dimension,box_plot_per_dimension_subsets, box_plot_per_dimension_with_colors, get_total_audio_duration, check_impact_of_normalization, calculate_wer_per_meta_category, calculate_wer_per_audio_feature
from app_utils import calculate_height_to_display, filter_dataframe
import matplotlib.pyplot as plt
import numpy as np
import statsmodels.api as sm
import seaborn as sns

hf_token = os.getenv('HF_TOKEN')
if hf_token is None:
    raise ValueError("HF_TOKEN environment variable is not set. Please check your secrets settings.")

# Tabs
# About (description of the benchmark) - methodology
# Leaderboards
# Interactive analysis
# Acknowledgements

# select the dataset to display results
datasets_secret = [
    "amu-cai/pl-asr-bigos-v2-secret",
    "pelcra/pl-asr-pelcra-for-bigos-secret"]

datasets_public = []
    #["amu-cai/pl-asr-bigos-synth-med"]
    #amu-cai/pl-asr-bigos-v2-diagnostic"

st.set_page_config(layout="wide")

about, lead_bigos,  lead_pelcra, analysis, interactive_comparison = st.tabs(["About", "ASR Leaderboard - BIGOS corpora", "ASR Leaderboard - PELCRA corpora", "ASR evaluation scenarios", "Interactive comparison of ASR accuracy"])
# "Results inspection""Results inspection"
# inspection
# acknowledgements, changelog, faq, todos = st.columns(4)
#lead_bigos_diagnostic, lead_bigos_synth    

cols_to_select_all = ["system", "subset", "ref_type", "norm_type", "SER", "MER", "WER", "CER"]

def plot_performance(systems_to_plot, df_per_system_with_type):
    # Get unique subsets
    subsets = df_per_system_with_type['subset'].unique()

    # Create a color and label map
    color_label_map = {
        free_system_with_best_wer: ('blue', 'Best Free'),
        free_system_with_worst_wer: ('red', 'Worst Free'),
        commercial_system_with_best_wer: ('green', 'Best Paid'),
        commercial_system_with_worst_wer: ('orange', 'Worst Paid')
    }

    # Plot the data
    fig, ax = plt.subplots(figsize=(14, 7))

    bar_width = 0.3
    index = np.arange(len(subsets))

    for i, system in enumerate(systems_to_plot):
        subset_wer = df_per_system_with_type[df_per_system_with_type['system'] == system].set_index('subset')['WER']
        color, label = color_label_map[system]
        ax.bar(index + i * bar_width, subset_wer.loc[subsets], bar_width, label=label + ' - ' + system, color=color)

    # Adding labels and title
    ax.set_xlabel('Subset')
    ax.set_ylabel('WER (%)')
    ax.set_title('Comparison of performance of ASR systems.')
    ax.set_xticks(index + bar_width * 1.5)
    ax.set_xticklabels(subsets, rotation=90, ha='right')
    ax.legend()

    st.pyplot(fig)

def round_to_nearest(value, multiple):
    return multiple * round(value / multiple)

def create_bar_chart(df, systems, metric, norm_type, ref_type='orig', orientation='vertical'):
    df = df[df['norm_type'] == norm_type]
    df = df[df['ref_type'] == ref_type]

    # Prepare the data for the bar chart
    subsets = df['subset'].unique()
    num_vars = len(subsets)
    bar_width = 0.2  # Width of the bars

    fig, ax = plt.subplots(figsize=(10, 10))
    
    max_value_all_systems = 0
    for i, system in enumerate(systems):
        system_data = df[df['system'] == system]
        max_value_for_system = max(system_data[metric])
        if max_value_for_system > max_value_all_systems:
            max_value_all_systems = round_to_nearest(max_value_for_system + 2, 10)
        
        # Ensure the system data is in the same order as subsets
        values = []
        for subset in subsets:
            subset_value = system_data[system_data['subset'] == subset][metric].values
            if len(subset_value) > 0:
                values.append(subset_value[0])
            else:
                values.append(0)  # Append 0 if the subset value is missing
        
        if orientation == 'vertical':
            # Plot each system's bars with an offset for vertical orientation
            x_pos = np.arange(len(subsets)) + i * bar_width
            ax.bar(x_pos, values, bar_width, label=system)
            # Add value labels
            for j, value in enumerate(values):
                ax.text(x_pos[j], value + max(values) * 0.03, f'{value}', ha='center', va='bottom',fontsize=6)
        else:
            # Plot each system's bars with an offset for horizontal orientation
            y_pos = np.arange(len(subsets)) + i * bar_width
            ax.barh(y_pos, values, bar_width, label=system)
            # Add value labels
            for j, value in enumerate(values):
                ax.text(value + max(values) * 0.03, y_pos[j], f'{value}', ha='left', va='center', fontsize=6)
    
    if orientation == 'vertical':
        ax.set_xticks(np.arange(len(subsets)) + bar_width * (len(systems) - 1) / 2)
        ax.set_xticklabels(subsets, rotation=45, ha='right')
        ax.set_ylabel(metric)
    else:
        ax.set_yticks(np.arange(len(subsets)) + bar_width * (len(systems) - 1) / 2)
        ax.set_yticklabels(subsets)
        ax.set_xlabel(metric)
    
    # Add grid values for the vertical and horizontal bar plots
    if orientation == 'vertical':
        ax.set_yticks(np.linspace(0, max_value_all_systems, 5))
    else:
        ax.set_xticks(np.linspace(0, max_value_all_systems, 5))
    
    # Put legend on the right side outside of the plot
    plt.legend(loc='upper right', bbox_to_anchor=(1.2, 1), shadow=True, ncol=1)

    st.pyplot(fig)

def create_radar_plot(df, enable_labels, systems, metric, norm_type, ref_type='orig'):

    df = df[df['norm_type'] == norm_type]
    df = df[df['ref_type'] == ref_type]

    # Prepare the data for the radar plot
    #systems = df['system'].unique()
    subsets = df['subset'].unique()
    num_vars = len(subsets)
    
    angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
    angles += angles[:1]  # Complete the loop
    
    fig, ax = plt.subplots(figsize=(10, 10), subplot_kw=dict(polar=True))
    
    max_value_all_systems = 0
    for system in systems:
        system_data = df[df['system'] == system]
        max_value_for_system =  max(system_data[metric])
        if max_value_for_system > max_value_all_systems:
            max_value_all_systems = round_to_nearest(max_value_for_system + 2, 10)
        
        # Ensure the system data is in the same order as subsets
        values = []
        for subset in subsets:
            subset_value = system_data[system_data['subset'] == subset][metric].values
            if len(subset_value) > 0:
                values.append(subset_value[0])
            else:
                values.append(0)  # Append 0 if the subset value is missing
        
        values += values[:1]  # Complete the loop
        
        # Plot each system
        ax.plot(angles, values, label=system)
        ax.fill(angles, values, alpha=0.25)
        
        # Add value labels
        for angle, value in zip(angles, values):
            ax.text(angle, value + max(values) * 0.01, f'{value}', ha='center', va='center', fontsize=6)
    
    ax.set_xticklabels(subsets)

    ax.set_yticks(np.linspace(0, max_value_all_systems, 5))
    
    # put legend at the bottom of the page
    plt.legend(loc='upper right', bbox_to_anchor=(1.2, 1), shadow=True, ncol=1)

    st.pyplot(fig)

with about:
    st.title("AMU Polish ASR Leaderboard")
    st.markdown(ABOUT_INFO, unsafe_allow_html=True)

    # Table - evaluated systems # TODO - change to concatenated table
    dataset = "amu-cai/pl-asr-bigos-v2-secret"
    split = "test"
    df_per_sample, df_per_dataset = read_latest_results(dataset, split, codename_to_shortname_mapping=None)
    evaluated_systems_list = df_per_sample["system"].unique()
    #print("ASR systems available in the eval results for dataset {}: ".format(dataset), evaluated_systems_list )
    
    df_evaluated_systems = retrieve_asr_systems_meta_from_the_catalog(evaluated_systems_list)
    # drop columns "Included in BIGOS benchmark"
    df_evaluated_systems = df_evaluated_systems.drop(columns=["Included in BIGOS benchmark"])
    # drop empty rows
    df_evaluated_systems = df_evaluated_systems.dropna(how='all')
    # drop empty columns
    df_evaluated_systems = df_evaluated_systems.dropna(axis=1, how='all')

    codename_to_shortname_mapping = dict(zip(df_evaluated_systems["Codename"],df_evaluated_systems["Shortname"]))
    #print(codename_to_shortname_mapping)

    h_df_systems = calculate_height_to_display(df_evaluated_systems)

    df_evaluated_systems_types_and_count = df_evaluated_systems["Type"].value_counts().reset_index()
    df_evaluated_systems_types_and_count.columns = ["Type", "Count"]
    st.subheader("Evaluated systems:")

    st.dataframe(df_evaluated_systems_types_and_count, hide_index=True, use_container_width=False)
    
    #TODO - add info who created the system (company, institution, team, etc.)
    # Split into separate tables for free and commercial systems
    free_systems = df_evaluated_systems[df_evaluated_systems['Type'] == 'free']
    commercial_systems = df_evaluated_systems[df_evaluated_systems['Type'] == 'commercial']

    st.subheader("Free systems:")
    # drop empty columns
    free_systems = free_systems.dropna(axis=1, how='all')
    # drop empty rows
    free_systems = free_systems.dropna(how='all')

    # do not display index
    st.dataframe(free_systems, hide_index=True, height = h_df_systems, use_container_width=True)
    
    st.subheader("Commercial systems:")
    # drop empty columns
    commercial_systems = commercial_systems.dropna(axis=1, how='all')
    # do not display index
    # drop empty rows
    commercial_systems = commercial_systems.dropna(how='all')

    st.dataframe(commercial_systems, hide_index=True, height = h_df_systems, use_container_width=True)

    # Table - evaluation datasets
    # Table - evaluation metrics
    # Table - evaluation metadata
    # List - references
    # List - contact points     
    # List - acknowledgements
    # List - changelog
    # List - FAQ
    # List - TODOs

with lead_bigos:
    st.title("BIGOS Leaderboard")
    st.markdown(BIGOS_INFO, unsafe_allow_html=True)

    # configuration for tab
    dataset = "amu-cai/pl-asr-bigos-v2-secret"
    dataset_short_name = "BIGOS"
    dataset_version = "V2"
    eval_date = "March 2024"
    split = "test"
    norm_type = "all"
    ref_type = "orig"
    
    # common, reusable part for all tabs presenting leaderboards for specific datasets
    #### DATA LOADING AND AUGMENTATION ####
    df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping)
    
    
    # filter only the ref_type and norm_type we want to analyze
    df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)]
    # filter only the ref_type and norm_type we want to analyze
    df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)]

    ##### PARAMETERS CALCULATION ####
    evaluated_systems_list = df_per_sample["system"].unique()
    no_of_evaluated_systems = len(evaluated_systems_list)
    no_of_eval_subsets = len(df_per_dataset["subset"].unique())
    no_of_test_cases = len(df_per_sample)
    no_of_unique_recordings = len(df_per_sample["id"].unique())
    total_audio_duration_hours = get_total_audio_duration(df_per_sample)
    no_of_unique_speakers = len(df_per_sample["speaker_id"].unique())

    df_per_dataset_with_asr_systems_meta = pd.merge(df_per_dataset, df_evaluated_systems, how="left", left_on="system", right_on="Shortname")
    print(df_per_dataset_with_asr_systems_meta.sample(5))
    # save sample to tsv
    df_per_dataset_with_asr_systems_meta.sample(5).to_csv("sample.tsv", sep="\t", index=False)

    ########### EVALUATION PARAMETERS PRESENTATION ################
    st.title("ASR leaderboard for dataset: {} {}".format(dataset_short_name, dataset_version))

    # MOST IMPORTANT RESULTS
    analysis_dim = "system"
    metric = "WER"
    st.subheader("Leaderboard - Median {} per ASR {} across all subsets of {} dataset".format(metric, analysis_dim, dataset_short_name))
    fig = box_plot_per_dimension_with_colors(df_per_dataset_with_asr_systems_meta, metric, analysis_dim, "{} per {} for dataset {}".format(metric, analysis_dim, dataset_short_name), analysis_dim, metric + "[%]","System", "Type")
    st.pyplot(fig, clear_figure=True, use_container_width=True)

    st.header("Benchmark details")
    st.markdown("**Evaluation date:** {}".format(eval_date))
    st.markdown("**Number of evaluated system-model variants:** {}".format(no_of_evaluated_systems))
    st.markdown("**Number of evaluated subsets:** {}".format(no_of_eval_subsets))
    st.markdown("**Number of evaluated system-model-subsets combinations**: {}".format(len(df_per_dataset)))
    st.markdown("**Number of unique speakers**: {}".format(no_of_unique_speakers))
    st.markdown("**Number of unique recordings used for evaluation:** {}".format(no_of_unique_recordings))
    st.markdown("**Total size of the dataset:** {:.2f} hours".format(total_audio_duration_hours))
    st.markdown("**Total number of test cases (audio-hypothesis pairs):** {}".format(no_of_test_cases))
    st.markdown("**Dataset:** {}".format(dataset))
    st.markdown("**Dataset version:** {}".format(dataset_version))
    st.markdown("**Split:** {}".format(split))
    st.markdown("**Text reference type:** {}".format(ref_type))
    st.markdown("**Normalization steps:** {}".format(norm_type))

    ########### RESULTS ################    
    st.header("WER (Word Error Rate) analysis")
    st.subheader("Average WER for the whole dataset")
    df_wer_avg = basic_stats_per_dimension(df_per_dataset, "WER", "dataset")
    st.dataframe(df_wer_avg)

    st.subheader("Comparison of average WER for free and commercial systems")
    df_wer_avg_free_commercial = basic_stats_per_dimension(df_per_dataset_with_asr_systems_meta, "WER", "Type")
    st.dataframe(df_wer_avg_free_commercial)


    ##################### PER SYSTEM ANALYSIS ######################### 
    analysis_dim = "system"
    metric = "WER"
    st.subheader("Table showing {} per {} sorted by median values".format(metric, analysis_dim))
    df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim)
    h_df_per_system_per_dataset = calculate_height_to_display(df_wer_per_system_from_per_dataset)
    st.dataframe(df_wer_per_system_from_per_dataset, height = h_df_per_system_per_dataset )

    ##################### PER SUBSET ANALYSIS ######################### 
    analysis_dim = "subset"
    metric = "WER"
    st.subheader("Table showing {} per {} sorted by median values".format(metric, analysis_dim))
    df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim)
    h_df_per_system_per_dataset = calculate_height_to_display(df_wer_per_system_from_per_dataset)
    st.dataframe(df_wer_per_system_from_per_dataset, height = h_df_per_system_per_dataset )

    st.subheader("Boxplot showing {} per {} sorted by median values".format(metric, analysis_dim))
    fig = box_plot_per_dimension_subsets(df_per_dataset, metric, analysis_dim, "{} per {} for dataset {}".format(metric, analysis_dim, dataset_short_name), analysis_dim +' of dataset ' + dataset_short_name , metric + " (%)", "system")
    st.pyplot(fig, clear_figure=True, use_container_width=True)

    ### IMPACT OF NORMALIZATION ON ERROR RATES ##### 
    # Calculate the average impact of various norm_types for all datasets and systems
    df_per_dataset_selected_cols = df_per_dataset_all[cols_to_select_all]
    diff_in_metrics = check_impact_of_normalization(df_per_dataset_selected_cols)
    st.subheader("Impact of normalization of references and hypothesis on evaluation metrics")
    st.dataframe(diff_in_metrics, use_container_width=False)

  # Visualizing the differences in metrics graphically with data labels
    # Visualizing the differences in metrics graphically with data labels
    fig, axs = plt.subplots(3, 2, figsize=(12, 12))
    fig.subplots_adjust(hspace=0.6, wspace=0.6)

    #remove the sixth subplot
    fig.delaxes(axs[2,1])

    metrics = ['SER', 'WER', 'MER', 'CER', "Average"]
    colors = ['blue', 'orange', 'green', 'red', 'purple']

    for ax, metric, color in zip(axs.flatten(), metrics, colors):
        bars = ax.bar(diff_in_metrics.index, diff_in_metrics[metric], color=color)
        ax.set_title(f'Normalization impact on {metric}')
        if metric == 'Average':
            ax.set_title('Average normalization impact on all metrics')
        ax.set_xlabel('Normalization Type')
        ax.set_ylabel(f'Difference in {metric}')
        ax.grid(True)
        ax.set_xticklabels(diff_in_metrics.index, rotation=45, ha='right')
        min_val = diff_in_metrics[metric].min()
        ax.set_ylim([min_val * 1.1, diff_in_metrics[metric].max() * 1.1])
   
        for bar in bars:
            height = bar.get_height()
            ax.annotate(f'{height:.2f}',
                        xy=(bar.get_x() + bar.get_width() / 2, height),
                        xytext=(0, -12),  # 3 points vertical offset
                        textcoords="offset points",
                        ha='center', va='bottom')


    # Display the plot in Streamlit
    st.pyplot(fig)

    ##################### APPENDIX #########################       
    st.header("Appendix - Full evaluation results per subset for all evaluated systems")
    # select only the columns we want to plot
    st.dataframe(df_per_dataset_selected_cols, hide_index=True, use_container_width=False)

with lead_pelcra:
    st.title("PELCRA Leaderboard")
    st.markdown(PELCRA_INFO, unsafe_allow_html=True)

    # configuration for tab
    dataset = "pelcra/pl-asr-pelcra-for-bigos-secret"
    dataset_short_name = "PELCRA"
    dataset_version = "V1"
    eval_date = "March 2024"
    split = "test"
    norm_type = "all"
    ref_type = "orig"
    
     # common, reusable part for all tabs presenting leaderboards for specific datasets
    #### DATA LOADING AND AUGMENTATION ####
    df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping)
    
    
    # filter only the ref_type and norm_type we want to analyze
    df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)]
    # filter only the ref_type and norm_type we want to analyze
    df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)]

    ##### PARAMETERS CALCULATION ####
    evaluated_systems_list = df_per_sample["system"].unique()
    no_of_evaluated_systems = len(evaluated_systems_list)
    no_of_eval_subsets = len(df_per_dataset["subset"].unique())
    no_of_test_cases = len(df_per_sample)
    no_of_unique_recordings = len(df_per_sample["id"].unique())
    total_audio_duration_hours = get_total_audio_duration(df_per_sample)
    no_of_unique_speakers = len(df_per_sample["speaker_id"].unique())

    df_per_dataset_with_asr_systems_meta = pd.merge(df_per_dataset, df_evaluated_systems, how="left", left_on="system", right_on="Shortname")

     # MOST IMPORTANT RESULTS
    analysis_dim = "system"
    metric = "WER"
    st.subheader("Leaderboard - Median {} per ASR {} across all subsets of {} dataset".format(metric, analysis_dim, dataset_short_name))
    fig = box_plot_per_dimension_with_colors(df_per_dataset_with_asr_systems_meta, metric, analysis_dim, "{} per {}".format(metric, analysis_dim), analysis_dim, metric + "[%]","System", "Type")
    st.pyplot(fig, clear_figure=True, use_container_width=True)

    st.header("Benchmark details")
    st.markdown("**Evaluation date:** {}".format(eval_date))
    st.markdown("**Number of evaluated system-model variants:** {}".format(no_of_evaluated_systems))
    st.markdown("**Number of evaluated subsets:** {}".format(no_of_eval_subsets))
    st.markdown("**Number of evaluated system-model-subsets combinations**: {}".format(len(df_per_dataset)))
    st.markdown("**Number of unique speakers**: {}".format(no_of_unique_speakers))
    st.markdown("**Number of unique recordings used for evaluation:** {}".format(no_of_unique_recordings))
    st.markdown("**Total size of the dataset:** {:.2f} hours".format(total_audio_duration_hours))
    st.markdown("**Total number of test cases (audio-hypothesis pairs):** {}".format(no_of_test_cases))
    st.markdown("**Dataset:** {}".format(dataset))
    st.markdown("**Dataset version:** {}".format(dataset_version))
    st.markdown("**Split:** {}".format(split))
    st.markdown("**Text reference type:** {}".format(ref_type))
    st.markdown("**Normalization steps:** {}".format(norm_type))

    ########### RESULTS ################
    st.header("WER (Word Error Rate) analysis")
    st.subheader("Average WER for the whole dataset")
    df_wer_avg = basic_stats_per_dimension(df_per_dataset, "WER", "dataset")
    st.dataframe(df_wer_avg)

    st.subheader("Comparison of average WER for free and commercial systems")
    df_wer_avg_free_commercial = basic_stats_per_dimension(df_per_dataset_with_asr_systems_meta, "WER", "Type")
    st.dataframe(df_wer_avg_free_commercial)

    ##################### PER SYSTEM ANALYSIS ######################### 
    analysis_dim = "system"
    metric = "WER"
    st.subheader("Table showing {} per {} sorted by median values".format(metric, analysis_dim))
    df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim)
    h_df_per_system_per_dataset = calculate_height_to_display(df_wer_per_system_from_per_dataset)
    st.dataframe(df_wer_per_system_from_per_dataset, height = h_df_per_system_per_dataset )


    ##################### PER SUBSET ANALYSIS ######################### 
    analysis_dim = "subset"
    metric = "WER"
    st.subheader("Table showing {} per {} sorted by median values".format(metric, analysis_dim))
    df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim)
    h_df_per_system_per_dataset = calculate_height_to_display(df_wer_per_system_from_per_dataset)
    st.dataframe(df_wer_per_system_from_per_dataset, height = h_df_per_system_per_dataset )

    st.subheader("Boxplot showing {} per {} sorted by median values".format(metric, analysis_dim))
    fig = box_plot_per_dimension_subsets(df_per_dataset, metric, analysis_dim, "{} per {} for dataset {}".format(metric, analysis_dim, dataset_short_name), analysis_dim +' of dataset ' + dataset_short_name , metric + " (%)", "system")
    st.pyplot(fig, clear_figure=True, use_container_width=True)

    ### IMPACT OF NORMALIZATION ON ERROR RATES ##### 
    # Calculate the average impact of various norm_types for all datasets and systems
    df_per_dataset_selected_cols = df_per_dataset_all[cols_to_select_all]
    diff_in_metrics = check_impact_of_normalization(df_per_dataset_selected_cols)
    st.subheader("Impact of normalization on WER")
    st.dataframe(diff_in_metrics, use_container_width=False)
    
    # Visualizing the differences in metrics graphically with data labels
    # Visualizing the differences in metrics graphically with data labels
    fig, axs = plt.subplots(3, 2, figsize=(12, 12))
    fig.subplots_adjust(hspace=0.6, wspace=0.6)

    #remove the sixth subplot
    fig.delaxes(axs[2,1])

    metrics = ['SER', 'WER', 'MER', 'CER', "Average"]
    colors = ['blue', 'orange', 'green', 'red', 'purple']

    for ax, metric, color in zip(axs.flatten(), metrics, colors):
            bars = ax.bar(diff_in_metrics.index, diff_in_metrics[metric], color=color)
            ax.set_title(f'Normalization impact on {metric}')
            if metric == 'Average':
                ax.set_title('Average normalization impact on all metrics')
            ax.set_xlabel('Normalization Type')
            ax.set_ylabel(f'Difference in {metric}')
            ax.grid(True)
            ax.set_xticklabels(diff_in_metrics.index, rotation=45, ha='right')
            min_val = diff_in_metrics[metric].min()
            ax.set_ylim([min_val * 1.1, diff_in_metrics[metric].max() * 1.1])
    
            for bar in bars:
                height = bar.get_height()
                ax.annotate(f'{height:.2f}',
                            xy=(bar.get_x() + bar.get_width() / 2, height),
                            xytext=(0, -12),  # 3 points vertical offset
                            textcoords="offset points",
                            ha='center', va='bottom')

    # Display the plot in Streamlit
    st.pyplot(fig)

    ##################### APPENDIX #########################       
    st.header("Appendix - Full evaluation results per subset for all evaluated systems")
    # select only the columns we want to plot
    df_per_dataset_selected_cols = df_per_dataset_all[cols_to_select_all]   
    st.dataframe(df_per_dataset_selected_cols, hide_index=True, use_container_width=False)

with analysis:
    datasets = datasets_secret + datasets_public
  
    dataset = st.selectbox("Select Dataset", datasets, index=datasets.index('amu-cai/pl-asr-bigos-v2-secret'),  key="select_dataset_scenarios")

    if dataset == "amu-cai/pl-asr-bigos-v2-secret":
        dataset_short_name = "BIGOS"
    elif dataset == "pelcra/pl-asr-pelcra-for-bigos-secret":
        dataset_short_name = "PELCRA"
    else:
        dataset_short_name = "UNKNOWN"
    
    # read the latest results for the selected dataset
    print("Reading the latest results for dataset: ", dataset)
    df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping)
    # filter only the ref_type and norm_type we want to analyze
    df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)]
    # filter only the ref_type and norm_type we want to analyze
    df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)]

    evaluated_systems_list = df_per_sample["system"].unique()
    print(evaluated_systems_list)
    df_evaluated_systems = retrieve_asr_systems_meta_from_the_catalog(evaluated_systems_list)
    print(df_evaluated_systems)


    ##### ANALYSIS - COMMERCIAL VS FREE SYSTEMS #####
    # Generate dataframe with columns as follows System Type Subset Avg_WER
    df_per_dataset_with_asr_systems_meta = pd.merge(df_per_dataset, df_evaluated_systems, how="left", left_on="system", right_on="Shortname")

    df_wer_avg_per_system_all_subsets_with_type = df_per_dataset_with_asr_systems_meta.groupby(['system', 'Type', 'subset'])['WER'].mean().reset_index()
    print(df_wer_avg_per_system_all_subsets_with_type)

    # Select the best and worse system for free and commercial systems
    free_systems = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['Type'] == 'free']['system'].unique()
    commercial_systems = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['Type'] == 'commercial']['system'].unique()
    free_system_with_best_wer = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['system'].isin(free_systems)].groupby('system')['WER'].mean().idxmin()
    free_system_with_worst_wer = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['system'].isin(free_systems)].groupby('system')['WER'].mean().idxmax()
    commercial_system_with_best_wer = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['system'].isin(commercial_systems)].groupby('system')['WER'].mean().idxmin()
    commercial_system_with_worst_wer = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['system'].isin(commercial_systems)].groupby('system')['WER'].mean().idxmax()
    
    #print(f"Best free system: {free_system_with_best_wer}")
    #print(f"Worst free system: {free_system_with_worst_wer}")
    #print(f"Best commercial system: {commercial_system_with_best_wer}")
    #print(f"Worst commercial system: {commercial_system_with_worst_wer}")

    st.subheader("Comparison of WER for free and commercial systems")
    # Best and worst system for free and commercial systems - print table
    header = ["Type", "Best System", "Worst System"]
    data = [
        ["Free", free_system_with_best_wer, free_system_with_worst_wer],
        ["Commercial", commercial_system_with_best_wer, commercial_system_with_worst_wer]
    ]

    st.subheader("Best and worst systems for dataset {}".format(dataset))
    df_best_worse_systems = pd.DataFrame(data, columns=header)
    # do not display index
    st.dataframe(df_best_worse_systems, hide_index=True)
    
    st.subheader("Comparison of average WER for best systems")
    df_per_dataset_best_systems = df_per_dataset_with_asr_systems_meta[df_per_dataset_with_asr_systems_meta['system'].isin([free_system_with_best_wer, commercial_system_with_best_wer])]
    df_wer_avg_best_free_commercial = basic_stats_per_dimension(df_per_dataset_best_systems, "WER", "Type")
    st.dataframe(df_wer_avg_best_free_commercial)

    # Create lookup table to get system type based on its name
    #system_type_lookup = dict(zip(df_wer_avg_per_system_all_subsets_with_type['system'], df_wer_avg_per_system_all_subsets_with_type['Type']))

    systems_to_plot_best= [free_system_with_best_wer, commercial_system_with_best_wer]
    plot_performance(systems_to_plot_best, df_wer_avg_per_system_all_subsets_with_type)

    st.subheader("Comparison of average WER for the worst systems")
    df_per_dataset_worst_systems = df_per_dataset_with_asr_systems_meta[df_per_dataset_with_asr_systems_meta['system'].isin([free_system_with_worst_wer, commercial_system_with_worst_wer])]
    df_wer_avg_worst_free_commercial = basic_stats_per_dimension(df_per_dataset_worst_systems, "WER", "Type")
    st.dataframe(df_wer_avg_worst_free_commercial)  

    systems_to_plot_worst=[free_system_with_worst_wer, commercial_system_with_worst_wer]
    plot_performance(systems_to_plot_worst, df_wer_avg_per_system_all_subsets_with_type)

    # WER in function of model size
    st.subheader("WER in function of model size for dataset {}".format(dataset))

    # select only free systems for the analysis from df_wer_avg_per_system_all_subsets_with_type dataframe
    free_systems_wer_per_subset = df_per_dataset_with_asr_systems_meta.groupby(['system', 'Parameters [M]', 'subset'])['WER'].mean().reset_index()
    # sort by model size
    # change column type Parameters [M] to integer
    free_systems_wer_per_subset['Parameters [M]'] = free_systems_wer_per_subset['Parameters [M]'].astype(int)

    free_systems_wer_per_subset = free_systems_wer_per_subset.sort_values(by='Parameters [M]')

    free_systems_wer_average_across_all_subsets = free_systems_wer_per_subset.groupby(['system', 'Parameters [M]'])['WER'].mean().reset_index()
    # change column type Parameters [M] to integer
    free_systems_wer_average_across_all_subsets['Parameters [M]'] = free_systems_wer_average_across_all_subsets['Parameters [M]'].astype(int)

    # sort by model size
    free_systems_wer_average_across_all_subsets = free_systems_wer_average_across_all_subsets.sort_values(by='Parameters [M]')

    free_systems_wer = free_systems_wer_average_across_all_subsets
    
    # use system name as index
    free_systems_wer_to_show = free_systems_wer.set_index('system')

    # sort by WER and round WER by value to 2 decimal places
    free_systems_wer_to_show = free_systems_wer_to_show.sort_values(by='WER').round({'WER': 2})
    
    # print dataframe in streamlit with average WER, system name and model size
    st.dataframe(free_systems_wer_to_show)

    # plot scatter plot with values of WER
    # X axis is the model size (parameters [M])
    # Y is thw average WER
    # make each point a different color 
    # provide legend with system names
    fig, ax = plt.subplots(figsize=(10, 7))

    # Define larger jitter for close points
    jitter_x = 5
    jitter_y = 0.2

    # Alternate marker shapes to distinguish overlapping points
    marker_styles = ['o', 's', 'D', '^', 'v', '<', '>']  # Circle, square, diamond, and other shapes
    marker_dict = {system: marker_styles[i % len(marker_styles)] for i, system in enumerate(free_systems_wer['system'].unique())}

    for system in free_systems_wer['system'].unique():
        subset = free_systems_wer[free_systems_wer['system'] == system]
        marker_style = marker_dict[system]
        
        # Scatter plot with distinct marker shapes for each system
        ax.scatter(
            subset['Parameters [M]'] + jitter_x * (np.random.rand(len(subset)) - 0.5),  # Apply jitter to x for overlap
            subset['WER'] + jitter_y * (np.random.rand(len(subset)) - 0.5),  # Apply jitter to y for overlap
            label=system, s=100, alpha=0.7, edgecolor='black', marker=marker_style
        )
        
        # Add text annotations with dynamic positioning to avoid overlap with y-axis
        for i, point in subset.iterrows():
            # Adjust position to avoid overlap with y-axis
            x_offset = 10 if point['Parameters [M]'] < 50 else -10 if i % 2 == 1 else 10  # Push right if close to y-axis
            y_offset = -0.5 if i % 2 == 0 else 0.5  # Alternate vertical offset
            
            ax.annotate(
                point['system'], 
                (point['Parameters [M]'], point['WER']),
                textcoords="offset points", 
                xytext=(x_offset, y_offset), 
                ha='right' if x_offset < 0 else 'left',
                fontsize=10,
                bbox=dict(boxstyle="round,pad=0.3", edgecolor='white', facecolor='white', alpha=0.7)
            )

    # Set axis labels and title
    ax.set_xlabel('Model Size [M Parameters]', fontsize=12)
    ax.set_ylabel('WER (%)', fontsize=12)
    ax.set_title(f'WER vs. Model Size for Dataset {dataset_short_name}', fontsize=14, pad=20)

    # Adjust legend settings to fit outside the main plot area
    ax.legend(
        title='System', bbox_to_anchor=(0.8, 1), loc='upper left', 
        fontsize=8, title_fontsize=9, frameon=True, shadow=False, facecolor='white')
    #)

    # Add grid lines and minor ticks for better readability
    ax.grid(True, linestyle='--', alpha=0.5)
    ax.minorticks_on()
    ax.tick_params(which='both', direction='in', top=True, right=True)

    
    # increase granularity of y-axis to 20 points per whole range
    # Set y-axis limits: lower bound at 0, upper bound to next highest multiple of 5
    y_min = 0
    y_max = ax.get_ylim()[1]  # Get the current maximum y value
    y_max_rounded = np.ceil(y_max / 5) * 5  # Round y_max up to the next highest multiple of 5
    ax.set_ylim(y_min, y_max_rounded)

    # Improve layout spacing
    plt.tight_layout()

    # Display the plot
    st.pyplot(fig)


    ##################################################################################################################################################
    # WER per audio duration
        
    # calculate average WER per audio duration bucket for the best and worse commercial and free systems
    selected_systems = [free_system_with_best_wer, commercial_system_with_best_wer]
    
    # filter out results for selected systems
    df_per_sample_selected_systems = df_per_sample[df_per_sample['system'].isin(selected_systems)]
    
    # calculate average WER per audio duration for the best system
    # add column with audio duration in seconds rounded to nearest integer value.
    audio_duration_buckets = [1,2,3,4,5,10,15,20,30,40,50,60]
    # map audio duration to the closest bucket
    df_per_sample_selected_systems['audio_duration_buckets'] = df_per_sample_selected_systems['audio_duration'].apply(lambda x: min(audio_duration_buckets, key=lambda y: abs(x-y)))


    # calculate average WER per audio duration bucket
    df_per_sample_wer_audio = df_per_sample_selected_systems.groupby(['system', 'audio_duration_buckets'])['WER'].mean().reset_index()
    # add column with number of samples for specific audio bucket size
    df_per_sample_wer_audio['number_of_samples'] = df_per_sample_selected_systems.groupby(['system', 'audio_duration_buckets'])['WER'].count().values

    df_per_sample_wer_audio = df_per_sample_wer_audio.sort_values(by='audio_duration_buckets')
    # round values in WER column in df_per_sample_wer to 2 decimal places
    df_per_sample_wer_audio['WER'].round(2)
    # transform df_per_sample_wer. Use system values as columns, while audio_duration_buckets as main index
    df_per_sample_wer_audio_pivot = df_per_sample_wer_audio.pivot(index='audio_duration_buckets', columns='system', values='WER')
    df_per_sample_wer_audio_pivot = df_per_sample_wer_audio_pivot.round(2)
    
    df_per_sample_wer_audio_pivot['number_of_samples'] = df_per_sample_wer_audio[df_per_sample_wer_audio['system']==free_system_with_best_wer].groupby('audio_duration_buckets')['number_of_samples'].sum().values
    
    # put number_of_samples as the first column after index
    df_per_sample_wer_audio_pivot = df_per_sample_wer_audio_pivot[['number_of_samples'] + [col for col in df_per_sample_wer_audio_pivot.columns if col != 'number_of_samples']]

    # print dataframe in streamlit
    st.dataframe(df_per_sample_wer_audio_pivot)

    # create scatter plot with WER in function of audio duration
    fig, ax = plt.subplots()
    for system in selected_systems:
        subset = df_per_sample_wer_audio[df_per_sample_wer_audio['system'] == system]
        ax.scatter(subset['audio_duration_buckets'], subset['WER'], label=system, s=subset['number_of_samples']*0.5)
    ax.set_xlabel('Audio Duration [s]')
    ax.set_ylabel('WER (%)')
    ax.set_title('WER in function of audio duration.')

    # place legend outside the plot on the right
    ax.legend(title='System', bbox_to_anchor=(1.05, 1), loc='upper left')
    st.pyplot(fig)

    ##################################################################################################################################################
    # WER per speech rate

    
    # speech rate chars unique values
    audio_feature_to_analyze = 'speech_rate_words'
    audio_feature_unit = ' [words/s]'
    metric = 'WER'
    metric_unit = ' (%)'
    no_of_buckets = 10
    # calculate average WER per audio duration bucket for the best and worse commercial and free systems
    selected_systems = [free_system_with_best_wer, commercial_system_with_best_wer]

    df_per_sample_wer_feature_pivot, df_per_sample_wer_feature = calculate_wer_per_audio_feature(df_per_sample, selected_systems, audio_feature_to_analyze, metric, no_of_buckets)

    # print dataframe in streamlit
    st.dataframe(df_per_sample_wer_feature_pivot)

    # Set a threshold to remove outliers - here we use the 97th percentile of WER
    threshold = df_per_sample_wer_feature[metric].quantile(0.97)

    # Remove data points with WER greater than the threshold
    filtered_df = df_per_sample_wer_feature[df_per_sample_wer_feature[metric] <= threshold]

    # Create figure and axis with larger size
    fig, ax = plt.subplots(figsize=(10, 7))

    # Scatter plot for each system
    for system in selected_systems:
        subset = filtered_df[filtered_df['system'] == system]
        ax.scatter(subset[audio_feature_to_analyze], 
                subset[metric], 
                label=system, 
                s=subset['number_of_samples'] * 0.5, 
                alpha=0.6)  # Set alpha for better visibility of overlapping points

        # Adding a trend line using LOWESS
        lowess = sm.nonparametric.lowess
        trend = lowess(subset[metric], subset[audio_feature_to_analyze], frac=0.3)  # Adjust frac to control smoothing
        ax.plot(trend[:, 0], trend[:, 1], label=f'{system} Trend', linestyle='-', linewidth=2)

    # Set axis labels with improved formatting for readability
    ax.set_xlabel(audio_feature_to_analyze.replace('_', ' ').capitalize() + ' ' +  audio_feature_unit )
    ax.set_ylabel(metric + ' ' + metric_unit )

    # Set an improved title that is more informative
    ax.set_title('Word Error Rate (WER) vs Speech Rate\nBest Performing Free and Paid Systems', fontsize=14)
    
    # increase granularity of y-axis to 20 points per whole range
    # Set y-axis limits: lower bound at 0, upper bound to next highest multiple of 5
    y_min = 0
    y_max = ax.get_ylim()[1]  # Get the current maximum y value
    y_max_rounded = np.ceil(y_max / 5) * 5  # Round y_max up to the next highest multiple of 5
    ax.set_ylim(y_min, y_max_rounded)

    # Add a grid to improve readability and alignment
    ax.grid(True, linestyle='--', alpha=0.7)

    # Place legend outside the plot area to prevent overlapping with data points
    ax.legend(title='System', loc='upper right', bbox_to_anchor=(0.95, 1))

    # Add tight layout to improve spacing between elements
    fig.tight_layout()

    # Display the plot
    st.pyplot(fig)



    ################################################################################################################################################
    # WER PER GENDER

    #selected_systems = [free_system_with_best_wer, commercial_system_with_best_wer, free_system_with_worst_wer, commercial_system_with_worst_wer]
    selected_systems = df_per_sample['system'].unique()

    df_per_sample_wer_gender_pivot, df_available_samples_per_category_per_system, no_samples_per_category = calculate_wer_per_meta_category(df_per_sample, selected_systems, 'WER', 'speaker_gender')
    #print(df_per_sample_wer_gender_pivot)
    #print(no_samples_per_category)

    # print dataframe in streamlit
    st.write("Number of samples per category")
    for system in selected_systems:
        st.write(f"System: {system}")
        df_available_samples_per_category = df_available_samples_per_category_per_system[system]
        st.dataframe(df_available_samples_per_category)

    st.write("Number of samples analyzed per category - {}".format(no_samples_per_category))
    st.dataframe(df_per_sample_wer_gender_pivot)
    

    #print(difference_values)
    #print(selected_systems)

    # create the scatter plot
    # the x axis should be the systems from selected_systems
    # the y axis should be the difference from difference_values
    # each system should have a different color
    fig, ax = plt.subplots()
    difference_values = df_per_sample_wer_gender_pivot['Difference'][:-3]
    selected_systems = df_per_sample_wer_gender_pivot.index[:-3]
    ax.scatter(difference_values, selected_systems, c=range(len(selected_systems)), cmap='viridis')
    ax.set_ylabel('ASR System')
    ax.set_xlabel('Difference in WER across speaker gender')
    ax.set_title('ASR systems perfomance bias for genders.')
    # add labels with difference in WER values
    for i, txt in enumerate(difference_values):
        ax.annotate(txt, (difference_values[i], selected_systems[i]), fontsize=5, ha='right')
    st.pyplot(fig)
    
    #####################################################################################################################################################################################
    # WER per age
    df_per_sample_wer_age_pivot, df_available_samples_per_category_per_system, no_samples_per_category = calculate_wer_per_meta_category(df_per_sample, selected_systems,'WER','speaker_age')
    #print(df_per_sample_wer_age_pivot)
    #print(no_samples_per_category)

    # print dataframe in streamlit
    st.write("Number of samples per category")
    for system in selected_systems:
        st.write(f"System: {system}")
        df_available_samples_per_category = df_available_samples_per_category_per_system[system]
        st.dataframe(df_available_samples_per_category)

    st.write("Number of samples analyzed per category - {}".format(no_samples_per_category))

    st.write("WER per age")
    st.dataframe(df_per_sample_wer_age_pivot)
    
    # extract columns from df_per_sample_wer_age_pivot for selected_systems (skip  the last 3 values corresponding to median, average and std values)

    #print(selected_systems)

    # create the scatter plot
    # the x axis should be the systems from selected_systems
    # the y axis should be the difference from difference_values
    # each system should have a different color
    fig, ax = plt.subplots()
    difference_values = df_per_sample_wer_age_pivot['Std Dev'][:-3]
    selected_systems = df_per_sample_wer_age_pivot.index[:-3]
    ax.scatter(difference_values,selected_systems , c=range(len(selected_systems)), cmap='viridis')
    ax.set_ylabel('ASR System')
    ax.set_xlabel('Standard Deviation in WER across speaker age')
    ax.set_title('ASR systems perfomance bias for age groups')
    # add labels with difference in WER values
    for i, txt in enumerate(difference_values):
        ax.annotate(txt, (difference_values[i], selected_systems[i]), fontsize=5, ha='right')
    st.pyplot(fig)

    # READ vs CONVERSIONAL SPEECH AVERAGE WER

    # Hallucinations rate per system

with interactive_comparison:


    
    st.title("Interactive comparison of ASR Systems performance")
    st.markdown(COMPARISON_INFO, unsafe_allow_html=True)

    st.title("Plots for analyzing ASR Systems performance")
    
    datasets = datasets_secret + datasets_public

    dataset = st.selectbox("Select Dataset", datasets, index=datasets.index('amu-cai/pl-asr-bigos-v2-secret'), key="select_dataset_interactive_comparison")

    # read the latest results for the selected dataset
    print("Reading the latest results for dataset: ", dataset)
    df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping)
    # filter only the ref_type and norm_type we want to analyze
    df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)]
    # filter only the ref_type and norm_type we want to analyze
    df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)]

    evaluated_systems_list = df_per_sample["system"].unique()
    print(evaluated_systems_list)
    df_evaluated_systems = retrieve_asr_systems_meta_from_the_catalog(evaluated_systems_list)
    print(df_evaluated_systems)

    # read available options to analyze for specific dataset
    splits = list(df_per_dataset_all['subset'].unique()) # Get the unique splits
    norm_types = list(df_per_dataset_all['norm_type'].unique()) # Get the unique norm_types
    ref_types = list(df_per_dataset_all['ref_type'].unique()) # Get the unique ref_types
    systems = list(df_per_dataset_all['system'].unique()) # Get the unique systems
    metrics = list(df_per_dataset_all.columns[7:]) # Get the unique metrics

    # Select the system to display. More than 1 system can be selected.
    systems_selected = st.multiselect("Select ASR Systems", systems) 
    
    # Select the metric to display
    metric = st.selectbox("Select Metric", metrics, index=metrics.index('WER'))

    # Select the normalization type
    norm_type = st.selectbox("Select Normalization Type", norm_types, index=norm_types.index('all'))
    # Select the reference type
    ref_type = st.selectbox("Select Reference Type", ref_types, index=ref_types.index('orig'))

    enable_labels = st.checkbox("Enable labels on radar plot", value=True)

    enable_bar_chart = st.checkbox("Enable bar chart", value=True)
    enable_polar_plot = st.checkbox("Enable radar plot", value=True)

    orientation = st.selectbox("Select orientation", ["vertical", "horizontal"], index=0)

    if enable_polar_plot:
        if metric:
            if systems_selected:
                create_radar_plot(df_per_dataset_all, enable_labels, systems_selected, metric, norm_type, ref_type)

    if enable_bar_chart:
        if metric:
            if systems_selected:
                create_bar_chart(df_per_dataset_all, systems_selected , metric, norm_type, ref_type, orientation)