Spaces:
Running
Running
import os | |
import streamlit as st | |
import pandas as pd | |
from constants import BIGOS_INFO, PELCRA_INFO, ANALYSIS_INFO, ABOUT_INFO, INSPECTION_INFO, COMPARISON_INFO | |
from utils import read_latest_results, basic_stats_per_dimension, retrieve_asr_systems_meta_from_the_catalog, box_plot_per_dimension,box_plot_per_dimension_subsets, box_plot_per_dimension_with_colors, get_total_audio_duration, check_impact_of_normalization, calculate_wer_per_meta_category, calculate_wer_per_audio_feature | |
from app_utils import calculate_height_to_display, filter_dataframe | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import statsmodels.api as sm | |
import seaborn as sns | |
hf_token = os.getenv('HF_TOKEN') | |
if hf_token is None: | |
raise ValueError("HF_TOKEN environment variable is not set. Please check your secrets settings.") | |
# Tabs | |
# About (description of the benchmark) - methodology | |
# Leaderboards | |
# Interactive analysis | |
# Acknowledgements | |
# select the dataset to display results | |
datasets_secret = [ | |
"amu-cai/pl-asr-bigos-v2-secret", | |
"pelcra/pl-asr-pelcra-for-bigos-secret"] | |
datasets_public = [] | |
#["amu-cai/pl-asr-bigos-synth-med"] | |
#amu-cai/pl-asr-bigos-v2-diagnostic" | |
st.set_page_config(layout="wide") | |
about, lead_bigos, lead_pelcra, analysis, interactive_comparison = st.tabs(["About", "ASR Leaderboard - BIGOS corpora", "ASR Leaderboard - PELCRA corpora", "ASR evaluation scenarios", "Interactive comparison of ASR accuracy"]) | |
# "Results inspection""Results inspection" | |
# inspection | |
# acknowledgements, changelog, faq, todos = st.columns(4) | |
#lead_bigos_diagnostic, lead_bigos_synth | |
cols_to_select_all = ["system", "subset", "ref_type", "norm_type", "SER", "MER", "WER", "CER"] | |
def plot_performance(systems_to_plot, df_per_system_with_type): | |
# Get unique subsets | |
subsets = df_per_system_with_type['subset'].unique() | |
# Create a color and label map | |
color_label_map = { | |
free_system_with_best_wer: ('blue', 'Best Free'), | |
free_system_with_worst_wer: ('red', 'Worst Free'), | |
commercial_system_with_best_wer: ('green', 'Best Paid'), | |
commercial_system_with_worst_wer: ('orange', 'Worst Paid') | |
} | |
# Plot the data | |
fig, ax = plt.subplots(figsize=(14, 7)) | |
bar_width = 0.3 | |
index = np.arange(len(subsets)) | |
for i, system in enumerate(systems_to_plot): | |
subset_wer = df_per_system_with_type[df_per_system_with_type['system'] == system].set_index('subset')['WER'] | |
color, label = color_label_map[system] | |
ax.bar(index + i * bar_width, subset_wer.loc[subsets], bar_width, label=label + ' - ' + system, color=color) | |
# Adding labels and title | |
ax.set_xlabel('Subset') | |
ax.set_ylabel('WER (%)') | |
ax.set_title('Comparison of performance of ASR systems.') | |
ax.set_xticks(index + bar_width * 1.5) | |
ax.set_xticklabels(subsets, rotation=90, ha='right') | |
ax.legend() | |
st.pyplot(fig) | |
def round_to_nearest(value, multiple): | |
return multiple * round(value / multiple) | |
def create_bar_chart(df, systems, metric, norm_type, ref_type='orig', orientation='vertical'): | |
df = df[df['norm_type'] == norm_type] | |
df = df[df['ref_type'] == ref_type] | |
# Prepare the data for the bar chart | |
subsets = df['subset'].unique() | |
num_vars = len(subsets) | |
bar_width = 0.2 # Width of the bars | |
fig, ax = plt.subplots(figsize=(10, 10)) | |
max_value_all_systems = 0 | |
for i, system in enumerate(systems): | |
system_data = df[df['system'] == system] | |
max_value_for_system = max(system_data[metric]) | |
if max_value_for_system > max_value_all_systems: | |
max_value_all_systems = round_to_nearest(max_value_for_system + 2, 10) | |
# Ensure the system data is in the same order as subsets | |
values = [] | |
for subset in subsets: | |
subset_value = system_data[system_data['subset'] == subset][metric].values | |
if len(subset_value) > 0: | |
values.append(subset_value[0]) | |
else: | |
values.append(0) # Append 0 if the subset value is missing | |
if orientation == 'vertical': | |
# Plot each system's bars with an offset for vertical orientation | |
x_pos = np.arange(len(subsets)) + i * bar_width | |
ax.bar(x_pos, values, bar_width, label=system) | |
# Add value labels | |
for j, value in enumerate(values): | |
ax.text(x_pos[j], value + max(values) * 0.03, f'{value}', ha='center', va='bottom',fontsize=6) | |
else: | |
# Plot each system's bars with an offset for horizontal orientation | |
y_pos = np.arange(len(subsets)) + i * bar_width | |
ax.barh(y_pos, values, bar_width, label=system) | |
# Add value labels | |
for j, value in enumerate(values): | |
ax.text(value + max(values) * 0.03, y_pos[j], f'{value}', ha='left', va='center', fontsize=6) | |
if orientation == 'vertical': | |
ax.set_xticks(np.arange(len(subsets)) + bar_width * (len(systems) - 1) / 2) | |
ax.set_xticklabels(subsets, rotation=45, ha='right') | |
ax.set_ylabel(metric) | |
else: | |
ax.set_yticks(np.arange(len(subsets)) + bar_width * (len(systems) - 1) / 2) | |
ax.set_yticklabels(subsets) | |
ax.set_xlabel(metric) | |
# Add grid values for the vertical and horizontal bar plots | |
if orientation == 'vertical': | |
ax.set_yticks(np.linspace(0, max_value_all_systems, 5)) | |
else: | |
ax.set_xticks(np.linspace(0, max_value_all_systems, 5)) | |
# Put legend on the right side outside of the plot | |
plt.legend(loc='upper right', bbox_to_anchor=(1.2, 1), shadow=True, ncol=1) | |
st.pyplot(fig) | |
def create_radar_plot(df, enable_labels, systems, metric, norm_type, ref_type='orig'): | |
df = df[df['norm_type'] == norm_type] | |
df = df[df['ref_type'] == ref_type] | |
# Prepare the data for the radar plot | |
#systems = df['system'].unique() | |
subsets = df['subset'].unique() | |
num_vars = len(subsets) | |
angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist() | |
angles += angles[:1] # Complete the loop | |
fig, ax = plt.subplots(figsize=(10, 10), subplot_kw=dict(polar=True)) | |
max_value_all_systems = 0 | |
for system in systems: | |
system_data = df[df['system'] == system] | |
max_value_for_system = max(system_data[metric]) | |
if max_value_for_system > max_value_all_systems: | |
max_value_all_systems = round_to_nearest(max_value_for_system + 2, 10) | |
# Ensure the system data is in the same order as subsets | |
values = [] | |
for subset in subsets: | |
subset_value = system_data[system_data['subset'] == subset][metric].values | |
if len(subset_value) > 0: | |
values.append(subset_value[0]) | |
else: | |
values.append(0) # Append 0 if the subset value is missing | |
values += values[:1] # Complete the loop | |
# Plot each system | |
ax.plot(angles, values, label=system) | |
ax.fill(angles, values, alpha=0.25) | |
# Add value labels | |
for angle, value in zip(angles, values): | |
ax.text(angle, value + max(values) * 0.01, f'{value}', ha='center', va='center', fontsize=6) | |
ax.set_xticklabels(subsets) | |
ax.set_yticks(np.linspace(0, max_value_all_systems, 5)) | |
# put legend at the bottom of the page | |
plt.legend(loc='upper right', bbox_to_anchor=(1.2, 1), shadow=True, ncol=1) | |
st.pyplot(fig) | |
with about: | |
st.title("AMU Polish ASR Leaderboard") | |
st.markdown(ABOUT_INFO, unsafe_allow_html=True) | |
# Table - evaluated systems # TODO - change to concatenated table | |
dataset = "amu-cai/pl-asr-bigos-v2-secret" | |
split = "test" | |
df_per_sample, df_per_dataset = read_latest_results(dataset, split, codename_to_shortname_mapping=None) | |
evaluated_systems_list = df_per_sample["system"].unique() | |
#print("ASR systems available in the eval results for dataset {}: ".format(dataset), evaluated_systems_list ) | |
df_evaluated_systems = retrieve_asr_systems_meta_from_the_catalog(evaluated_systems_list) | |
# drop columns "Included in BIGOS benchmark" | |
df_evaluated_systems = df_evaluated_systems.drop(columns=["Included in BIGOS benchmark"]) | |
# drop empty rows | |
df_evaluated_systems = df_evaluated_systems.dropna(how='all') | |
# drop empty columns | |
df_evaluated_systems = df_evaluated_systems.dropna(axis=1, how='all') | |
codename_to_shortname_mapping = dict(zip(df_evaluated_systems["Codename"],df_evaluated_systems["Shortname"])) | |
#print(codename_to_shortname_mapping) | |
h_df_systems = calculate_height_to_display(df_evaluated_systems) | |
df_evaluated_systems_types_and_count = df_evaluated_systems["Type"].value_counts().reset_index() | |
df_evaluated_systems_types_and_count.columns = ["Type", "Count"] | |
st.subheader("Evaluated systems:") | |
st.dataframe(df_evaluated_systems_types_and_count, hide_index=True, use_container_width=False) | |
#TODO - add info who created the system (company, institution, team, etc.) | |
# Split into separate tables for free and commercial systems | |
free_systems = df_evaluated_systems[df_evaluated_systems['Type'] == 'free'] | |
commercial_systems = df_evaluated_systems[df_evaluated_systems['Type'] == 'commercial'] | |
st.subheader("Free systems:") | |
# drop empty columns | |
free_systems = free_systems.dropna(axis=1, how='all') | |
# drop empty rows | |
free_systems = free_systems.dropna(how='all') | |
# do not display index | |
st.dataframe(free_systems, hide_index=True, height = h_df_systems, use_container_width=True) | |
st.subheader("Commercial systems:") | |
# drop empty columns | |
commercial_systems = commercial_systems.dropna(axis=1, how='all') | |
# do not display index | |
# drop empty rows | |
commercial_systems = commercial_systems.dropna(how='all') | |
st.dataframe(commercial_systems, hide_index=True, height = h_df_systems, use_container_width=True) | |
# Table - evaluation datasets | |
# Table - evaluation metrics | |
# Table - evaluation metadata | |
# List - references | |
# List - contact points | |
# List - acknowledgements | |
# List - changelog | |
# List - FAQ | |
# List - TODOs | |
with lead_bigos: | |
st.title("BIGOS Leaderboard") | |
st.markdown(BIGOS_INFO, unsafe_allow_html=True) | |
# configuration for tab | |
dataset = "amu-cai/pl-asr-bigos-v2-secret" | |
dataset_short_name = "BIGOS" | |
dataset_version = "V2" | |
eval_date = "March 2024" | |
split = "test" | |
norm_type = "all" | |
ref_type = "orig" | |
# common, reusable part for all tabs presenting leaderboards for specific datasets | |
#### DATA LOADING AND AUGMENTATION #### | |
df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping) | |
# filter only the ref_type and norm_type we want to analyze | |
df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)] | |
# filter only the ref_type and norm_type we want to analyze | |
df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)] | |
##### PARAMETERS CALCULATION #### | |
evaluated_systems_list = df_per_sample["system"].unique() | |
no_of_evaluated_systems = len(evaluated_systems_list) | |
no_of_eval_subsets = len(df_per_dataset["subset"].unique()) | |
no_of_test_cases = len(df_per_sample) | |
no_of_unique_recordings = len(df_per_sample["id"].unique()) | |
total_audio_duration_hours = get_total_audio_duration(df_per_sample) | |
no_of_unique_speakers = len(df_per_sample["speaker_id"].unique()) | |
df_per_dataset_with_asr_systems_meta = pd.merge(df_per_dataset, df_evaluated_systems, how="left", left_on="system", right_on="Shortname") | |
print(df_per_dataset_with_asr_systems_meta.sample(5)) | |
# save sample to tsv | |
df_per_dataset_with_asr_systems_meta.sample(5).to_csv("sample.tsv", sep="\t", index=False) | |
########### EVALUATION PARAMETERS PRESENTATION ################ | |
st.title("ASR leaderboard for dataset: {} {}".format(dataset_short_name, dataset_version)) | |
# MOST IMPORTANT RESULTS | |
analysis_dim = "system" | |
metric = "WER" | |
st.subheader("Leaderboard - Median {} per ASR {} across all subsets of {} dataset".format(metric, analysis_dim, dataset_short_name)) | |
fig = box_plot_per_dimension_with_colors(df_per_dataset_with_asr_systems_meta, metric, analysis_dim, "{} per {} for dataset {}".format(metric, analysis_dim, dataset_short_name), analysis_dim, metric + "[%]","System", "Type") | |
st.pyplot(fig, clear_figure=True, use_container_width=True) | |
st.header("Benchmark details") | |
st.markdown("**Evaluation date:** {}".format(eval_date)) | |
st.markdown("**Number of evaluated system-model variants:** {}".format(no_of_evaluated_systems)) | |
st.markdown("**Number of evaluated subsets:** {}".format(no_of_eval_subsets)) | |
st.markdown("**Number of evaluated system-model-subsets combinations**: {}".format(len(df_per_dataset))) | |
st.markdown("**Number of unique speakers**: {}".format(no_of_unique_speakers)) | |
st.markdown("**Number of unique recordings used for evaluation:** {}".format(no_of_unique_recordings)) | |
st.markdown("**Total size of the dataset:** {:.2f} hours".format(total_audio_duration_hours)) | |
st.markdown("**Total number of test cases (audio-hypothesis pairs):** {}".format(no_of_test_cases)) | |
st.markdown("**Dataset:** {}".format(dataset)) | |
st.markdown("**Dataset version:** {}".format(dataset_version)) | |
st.markdown("**Split:** {}".format(split)) | |
st.markdown("**Text reference type:** {}".format(ref_type)) | |
st.markdown("**Normalization steps:** {}".format(norm_type)) | |
########### RESULTS ################ | |
st.header("WER (Word Error Rate) analysis") | |
st.subheader("Average WER for the whole dataset") | |
df_wer_avg = basic_stats_per_dimension(df_per_dataset, "WER", "dataset") | |
st.dataframe(df_wer_avg) | |
st.subheader("Comparison of average WER for free and commercial systems") | |
df_wer_avg_free_commercial = basic_stats_per_dimension(df_per_dataset_with_asr_systems_meta, "WER", "Type") | |
st.dataframe(df_wer_avg_free_commercial) | |
##################### PER SYSTEM ANALYSIS ######################### | |
analysis_dim = "system" | |
metric = "WER" | |
st.subheader("Table showing {} per {} sorted by median values".format(metric, analysis_dim)) | |
df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim) | |
h_df_per_system_per_dataset = calculate_height_to_display(df_wer_per_system_from_per_dataset) | |
st.dataframe(df_wer_per_system_from_per_dataset, height = h_df_per_system_per_dataset ) | |
##################### PER SUBSET ANALYSIS ######################### | |
analysis_dim = "subset" | |
metric = "WER" | |
st.subheader("Table showing {} per {} sorted by median values".format(metric, analysis_dim)) | |
df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim) | |
h_df_per_system_per_dataset = calculate_height_to_display(df_wer_per_system_from_per_dataset) | |
st.dataframe(df_wer_per_system_from_per_dataset, height = h_df_per_system_per_dataset ) | |
st.subheader("Boxplot showing {} per {} sorted by median values".format(metric, analysis_dim)) | |
fig = box_plot_per_dimension_subsets(df_per_dataset, metric, analysis_dim, "{} per {} for dataset {}".format(metric, analysis_dim, dataset_short_name), analysis_dim +' of dataset ' + dataset_short_name , metric + " (%)", "system") | |
st.pyplot(fig, clear_figure=True, use_container_width=True) | |
### IMPACT OF NORMALIZATION ON ERROR RATES ##### | |
# Calculate the average impact of various norm_types for all datasets and systems | |
df_per_dataset_selected_cols = df_per_dataset_all[cols_to_select_all] | |
diff_in_metrics = check_impact_of_normalization(df_per_dataset_selected_cols) | |
st.subheader("Impact of normalization of references and hypothesis on evaluation metrics") | |
st.dataframe(diff_in_metrics, use_container_width=False) | |
# Visualizing the differences in metrics graphically with data labels | |
# Visualizing the differences in metrics graphically with data labels | |
fig, axs = plt.subplots(3, 2, figsize=(12, 12)) | |
fig.subplots_adjust(hspace=0.6, wspace=0.6) | |
#remove the sixth subplot | |
fig.delaxes(axs[2,1]) | |
metrics = ['SER', 'WER', 'MER', 'CER', "Average"] | |
colors = ['blue', 'orange', 'green', 'red', 'purple'] | |
for ax, metric, color in zip(axs.flatten(), metrics, colors): | |
bars = ax.bar(diff_in_metrics.index, diff_in_metrics[metric], color=color) | |
ax.set_title(f'Normalization impact on {metric}') | |
if metric == 'Average': | |
ax.set_title('Average normalization impact on all metrics') | |
ax.set_xlabel('Normalization Type') | |
ax.set_ylabel(f'Difference in {metric}') | |
ax.grid(True) | |
ax.set_xticklabels(diff_in_metrics.index, rotation=45, ha='right') | |
min_val = diff_in_metrics[metric].min() | |
ax.set_ylim([min_val * 1.1, diff_in_metrics[metric].max() * 1.1]) | |
for bar in bars: | |
height = bar.get_height() | |
ax.annotate(f'{height:.2f}', | |
xy=(bar.get_x() + bar.get_width() / 2, height), | |
xytext=(0, -12), # 3 points vertical offset | |
textcoords="offset points", | |
ha='center', va='bottom') | |
# Display the plot in Streamlit | |
st.pyplot(fig) | |
##################### APPENDIX ######################### | |
st.header("Appendix - Full evaluation results per subset for all evaluated systems") | |
# select only the columns we want to plot | |
st.dataframe(df_per_dataset_selected_cols, hide_index=True, use_container_width=False) | |
with lead_pelcra: | |
st.title("PELCRA Leaderboard") | |
st.markdown(PELCRA_INFO, unsafe_allow_html=True) | |
# configuration for tab | |
dataset = "pelcra/pl-asr-pelcra-for-bigos-secret" | |
dataset_short_name = "PELCRA" | |
dataset_version = "V1" | |
eval_date = "March 2024" | |
split = "test" | |
norm_type = "all" | |
ref_type = "orig" | |
# common, reusable part for all tabs presenting leaderboards for specific datasets | |
#### DATA LOADING AND AUGMENTATION #### | |
df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping) | |
# filter only the ref_type and norm_type we want to analyze | |
df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)] | |
# filter only the ref_type and norm_type we want to analyze | |
df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)] | |
##### PARAMETERS CALCULATION #### | |
evaluated_systems_list = df_per_sample["system"].unique() | |
no_of_evaluated_systems = len(evaluated_systems_list) | |
no_of_eval_subsets = len(df_per_dataset["subset"].unique()) | |
no_of_test_cases = len(df_per_sample) | |
no_of_unique_recordings = len(df_per_sample["id"].unique()) | |
total_audio_duration_hours = get_total_audio_duration(df_per_sample) | |
no_of_unique_speakers = len(df_per_sample["speaker_id"].unique()) | |
df_per_dataset_with_asr_systems_meta = pd.merge(df_per_dataset, df_evaluated_systems, how="left", left_on="system", right_on="Shortname") | |
# MOST IMPORTANT RESULTS | |
analysis_dim = "system" | |
metric = "WER" | |
st.subheader("Leaderboard - Median {} per ASR {} across all subsets of {} dataset".format(metric, analysis_dim, dataset_short_name)) | |
fig = box_plot_per_dimension_with_colors(df_per_dataset_with_asr_systems_meta, metric, analysis_dim, "{} per {}".format(metric, analysis_dim), analysis_dim, metric + "[%]","System", "Type") | |
st.pyplot(fig, clear_figure=True, use_container_width=True) | |
st.header("Benchmark details") | |
st.markdown("**Evaluation date:** {}".format(eval_date)) | |
st.markdown("**Number of evaluated system-model variants:** {}".format(no_of_evaluated_systems)) | |
st.markdown("**Number of evaluated subsets:** {}".format(no_of_eval_subsets)) | |
st.markdown("**Number of evaluated system-model-subsets combinations**: {}".format(len(df_per_dataset))) | |
st.markdown("**Number of unique speakers**: {}".format(no_of_unique_speakers)) | |
st.markdown("**Number of unique recordings used for evaluation:** {}".format(no_of_unique_recordings)) | |
st.markdown("**Total size of the dataset:** {:.2f} hours".format(total_audio_duration_hours)) | |
st.markdown("**Total number of test cases (audio-hypothesis pairs):** {}".format(no_of_test_cases)) | |
st.markdown("**Dataset:** {}".format(dataset)) | |
st.markdown("**Dataset version:** {}".format(dataset_version)) | |
st.markdown("**Split:** {}".format(split)) | |
st.markdown("**Text reference type:** {}".format(ref_type)) | |
st.markdown("**Normalization steps:** {}".format(norm_type)) | |
########### RESULTS ################ | |
st.header("WER (Word Error Rate) analysis") | |
st.subheader("Average WER for the whole dataset") | |
df_wer_avg = basic_stats_per_dimension(df_per_dataset, "WER", "dataset") | |
st.dataframe(df_wer_avg) | |
st.subheader("Comparison of average WER for free and commercial systems") | |
df_wer_avg_free_commercial = basic_stats_per_dimension(df_per_dataset_with_asr_systems_meta, "WER", "Type") | |
st.dataframe(df_wer_avg_free_commercial) | |
##################### PER SYSTEM ANALYSIS ######################### | |
analysis_dim = "system" | |
metric = "WER" | |
st.subheader("Table showing {} per {} sorted by median values".format(metric, analysis_dim)) | |
df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim) | |
h_df_per_system_per_dataset = calculate_height_to_display(df_wer_per_system_from_per_dataset) | |
st.dataframe(df_wer_per_system_from_per_dataset, height = h_df_per_system_per_dataset ) | |
##################### PER SUBSET ANALYSIS ######################### | |
analysis_dim = "subset" | |
metric = "WER" | |
st.subheader("Table showing {} per {} sorted by median values".format(metric, analysis_dim)) | |
df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim) | |
h_df_per_system_per_dataset = calculate_height_to_display(df_wer_per_system_from_per_dataset) | |
st.dataframe(df_wer_per_system_from_per_dataset, height = h_df_per_system_per_dataset ) | |
st.subheader("Boxplot showing {} per {} sorted by median values".format(metric, analysis_dim)) | |
fig = box_plot_per_dimension_subsets(df_per_dataset, metric, analysis_dim, "{} per {} for dataset {}".format(metric, analysis_dim, dataset_short_name), analysis_dim +' of dataset ' + dataset_short_name , metric + " (%)", "system") | |
st.pyplot(fig, clear_figure=True, use_container_width=True) | |
### IMPACT OF NORMALIZATION ON ERROR RATES ##### | |
# Calculate the average impact of various norm_types for all datasets and systems | |
df_per_dataset_selected_cols = df_per_dataset_all[cols_to_select_all] | |
diff_in_metrics = check_impact_of_normalization(df_per_dataset_selected_cols) | |
st.subheader("Impact of normalization on WER") | |
st.dataframe(diff_in_metrics, use_container_width=False) | |
# Visualizing the differences in metrics graphically with data labels | |
# Visualizing the differences in metrics graphically with data labels | |
fig, axs = plt.subplots(3, 2, figsize=(12, 12)) | |
fig.subplots_adjust(hspace=0.6, wspace=0.6) | |
#remove the sixth subplot | |
fig.delaxes(axs[2,1]) | |
metrics = ['SER', 'WER', 'MER', 'CER', "Average"] | |
colors = ['blue', 'orange', 'green', 'red', 'purple'] | |
for ax, metric, color in zip(axs.flatten(), metrics, colors): | |
bars = ax.bar(diff_in_metrics.index, diff_in_metrics[metric], color=color) | |
ax.set_title(f'Normalization impact on {metric}') | |
if metric == 'Average': | |
ax.set_title('Average normalization impact on all metrics') | |
ax.set_xlabel('Normalization Type') | |
ax.set_ylabel(f'Difference in {metric}') | |
ax.grid(True) | |
ax.set_xticklabels(diff_in_metrics.index, rotation=45, ha='right') | |
min_val = diff_in_metrics[metric].min() | |
ax.set_ylim([min_val * 1.1, diff_in_metrics[metric].max() * 1.1]) | |
for bar in bars: | |
height = bar.get_height() | |
ax.annotate(f'{height:.2f}', | |
xy=(bar.get_x() + bar.get_width() / 2, height), | |
xytext=(0, -12), # 3 points vertical offset | |
textcoords="offset points", | |
ha='center', va='bottom') | |
# Display the plot in Streamlit | |
st.pyplot(fig) | |
##################### APPENDIX ######################### | |
st.header("Appendix - Full evaluation results per subset for all evaluated systems") | |
# select only the columns we want to plot | |
df_per_dataset_selected_cols = df_per_dataset_all[cols_to_select_all] | |
st.dataframe(df_per_dataset_selected_cols, hide_index=True, use_container_width=False) | |
with analysis: | |
datasets = datasets_secret + datasets_public | |
dataset = st.selectbox("Select Dataset", datasets, index=datasets.index('amu-cai/pl-asr-bigos-v2-secret'), key="select_dataset_scenarios") | |
if dataset == "amu-cai/pl-asr-bigos-v2-secret": | |
dataset_short_name = "BIGOS" | |
elif dataset == "pelcra/pl-asr-pelcra-for-bigos-secret": | |
dataset_short_name = "PELCRA" | |
else: | |
dataset_short_name = "UNKNOWN" | |
# read the latest results for the selected dataset | |
print("Reading the latest results for dataset: ", dataset) | |
df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping) | |
# filter only the ref_type and norm_type we want to analyze | |
df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)] | |
# filter only the ref_type and norm_type we want to analyze | |
df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)] | |
evaluated_systems_list = df_per_sample["system"].unique() | |
print(evaluated_systems_list) | |
df_evaluated_systems = retrieve_asr_systems_meta_from_the_catalog(evaluated_systems_list) | |
print(df_evaluated_systems) | |
##### ANALYSIS - COMMERCIAL VS FREE SYSTEMS ##### | |
# Generate dataframe with columns as follows System Type Subset Avg_WER | |
df_per_dataset_with_asr_systems_meta = pd.merge(df_per_dataset, df_evaluated_systems, how="left", left_on="system", right_on="Shortname") | |
df_wer_avg_per_system_all_subsets_with_type = df_per_dataset_with_asr_systems_meta.groupby(['system', 'Type', 'subset'])['WER'].mean().reset_index() | |
print(df_wer_avg_per_system_all_subsets_with_type) | |
# Select the best and worse system for free and commercial systems | |
free_systems = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['Type'] == 'free']['system'].unique() | |
commercial_systems = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['Type'] == 'commercial']['system'].unique() | |
free_system_with_best_wer = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['system'].isin(free_systems)].groupby('system')['WER'].mean().idxmin() | |
free_system_with_worst_wer = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['system'].isin(free_systems)].groupby('system')['WER'].mean().idxmax() | |
commercial_system_with_best_wer = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['system'].isin(commercial_systems)].groupby('system')['WER'].mean().idxmin() | |
commercial_system_with_worst_wer = df_wer_avg_per_system_all_subsets_with_type[df_wer_avg_per_system_all_subsets_with_type['system'].isin(commercial_systems)].groupby('system')['WER'].mean().idxmax() | |
#print(f"Best free system: {free_system_with_best_wer}") | |
#print(f"Worst free system: {free_system_with_worst_wer}") | |
#print(f"Best commercial system: {commercial_system_with_best_wer}") | |
#print(f"Worst commercial system: {commercial_system_with_worst_wer}") | |
st.subheader("Comparison of WER for free and commercial systems") | |
# Best and worst system for free and commercial systems - print table | |
header = ["Type", "Best System", "Worst System"] | |
data = [ | |
["Free", free_system_with_best_wer, free_system_with_worst_wer], | |
["Commercial", commercial_system_with_best_wer, commercial_system_with_worst_wer] | |
] | |
st.subheader("Best and worst systems for dataset {}".format(dataset)) | |
df_best_worse_systems = pd.DataFrame(data, columns=header) | |
# do not display index | |
st.dataframe(df_best_worse_systems, hide_index=True) | |
st.subheader("Comparison of average WER for best systems") | |
df_per_dataset_best_systems = df_per_dataset_with_asr_systems_meta[df_per_dataset_with_asr_systems_meta['system'].isin([free_system_with_best_wer, commercial_system_with_best_wer])] | |
df_wer_avg_best_free_commercial = basic_stats_per_dimension(df_per_dataset_best_systems, "WER", "Type") | |
st.dataframe(df_wer_avg_best_free_commercial) | |
# Create lookup table to get system type based on its name | |
#system_type_lookup = dict(zip(df_wer_avg_per_system_all_subsets_with_type['system'], df_wer_avg_per_system_all_subsets_with_type['Type'])) | |
systems_to_plot_best= [free_system_with_best_wer, commercial_system_with_best_wer] | |
plot_performance(systems_to_plot_best, df_wer_avg_per_system_all_subsets_with_type) | |
st.subheader("Comparison of average WER for the worst systems") | |
df_per_dataset_worst_systems = df_per_dataset_with_asr_systems_meta[df_per_dataset_with_asr_systems_meta['system'].isin([free_system_with_worst_wer, commercial_system_with_worst_wer])] | |
df_wer_avg_worst_free_commercial = basic_stats_per_dimension(df_per_dataset_worst_systems, "WER", "Type") | |
st.dataframe(df_wer_avg_worst_free_commercial) | |
systems_to_plot_worst=[free_system_with_worst_wer, commercial_system_with_worst_wer] | |
plot_performance(systems_to_plot_worst, df_wer_avg_per_system_all_subsets_with_type) | |
# WER in function of model size | |
st.subheader("WER in function of model size for dataset {}".format(dataset)) | |
# select only free systems for the analysis from df_wer_avg_per_system_all_subsets_with_type dataframe | |
free_systems_wer_per_subset = df_per_dataset_with_asr_systems_meta.groupby(['system', 'Parameters [M]', 'subset'])['WER'].mean().reset_index() | |
# sort by model size | |
# change column type Parameters [M] to integer | |
free_systems_wer_per_subset['Parameters [M]'] = free_systems_wer_per_subset['Parameters [M]'].astype(int) | |
free_systems_wer_per_subset = free_systems_wer_per_subset.sort_values(by='Parameters [M]') | |
free_systems_wer_average_across_all_subsets = free_systems_wer_per_subset.groupby(['system', 'Parameters [M]'])['WER'].mean().reset_index() | |
# change column type Parameters [M] to integer | |
free_systems_wer_average_across_all_subsets['Parameters [M]'] = free_systems_wer_average_across_all_subsets['Parameters [M]'].astype(int) | |
# sort by model size | |
free_systems_wer_average_across_all_subsets = free_systems_wer_average_across_all_subsets.sort_values(by='Parameters [M]') | |
free_systems_wer = free_systems_wer_average_across_all_subsets | |
# use system name as index | |
free_systems_wer_to_show = free_systems_wer.set_index('system') | |
# sort by WER and round WER by value to 2 decimal places | |
free_systems_wer_to_show = free_systems_wer_to_show.sort_values(by='WER').round({'WER': 2}) | |
# print dataframe in streamlit with average WER, system name and model size | |
st.dataframe(free_systems_wer_to_show) | |
# plot scatter plot with values of WER | |
# X axis is the model size (parameters [M]) | |
# Y is thw average WER | |
# make each point a different color | |
# provide legend with system names | |
fig, ax = plt.subplots(figsize=(10, 7)) | |
# Define larger jitter for close points | |
jitter_x = 5 | |
jitter_y = 0.2 | |
# Alternate marker shapes to distinguish overlapping points | |
marker_styles = ['o', 's', 'D', '^', 'v', '<', '>'] # Circle, square, diamond, and other shapes | |
marker_dict = {system: marker_styles[i % len(marker_styles)] for i, system in enumerate(free_systems_wer['system'].unique())} | |
for system in free_systems_wer['system'].unique(): | |
subset = free_systems_wer[free_systems_wer['system'] == system] | |
marker_style = marker_dict[system] | |
# Scatter plot with distinct marker shapes for each system | |
ax.scatter( | |
subset['Parameters [M]'] + jitter_x * (np.random.rand(len(subset)) - 0.5), # Apply jitter to x for overlap | |
subset['WER'] + jitter_y * (np.random.rand(len(subset)) - 0.5), # Apply jitter to y for overlap | |
label=system, s=100, alpha=0.7, edgecolor='black', marker=marker_style | |
) | |
# Add text annotations with dynamic positioning to avoid overlap with y-axis | |
for i, point in subset.iterrows(): | |
# Adjust position to avoid overlap with y-axis | |
x_offset = 10 if point['Parameters [M]'] < 50 else -10 if i % 2 == 1 else 10 # Push right if close to y-axis | |
y_offset = -0.5 if i % 2 == 0 else 0.5 # Alternate vertical offset | |
ax.annotate( | |
point['system'], | |
(point['Parameters [M]'], point['WER']), | |
textcoords="offset points", | |
xytext=(x_offset, y_offset), | |
ha='right' if x_offset < 0 else 'left', | |
fontsize=10, | |
bbox=dict(boxstyle="round,pad=0.3", edgecolor='white', facecolor='white', alpha=0.7) | |
) | |
# Set axis labels and title | |
ax.set_xlabel('Model Size [M Parameters]', fontsize=12) | |
ax.set_ylabel('WER (%)', fontsize=12) | |
ax.set_title(f'WER vs. Model Size for Dataset {dataset_short_name}', fontsize=14, pad=20) | |
# Adjust legend settings to fit outside the main plot area | |
ax.legend( | |
title='System', bbox_to_anchor=(0.8, 1), loc='upper left', | |
fontsize=8, title_fontsize=9, frameon=True, shadow=False, facecolor='white') | |
#) | |
# Add grid lines and minor ticks for better readability | |
ax.grid(True, linestyle='--', alpha=0.5) | |
ax.minorticks_on() | |
ax.tick_params(which='both', direction='in', top=True, right=True) | |
# increase granularity of y-axis to 20 points per whole range | |
# Set y-axis limits: lower bound at 0, upper bound to next highest multiple of 5 | |
y_min = 0 | |
y_max = ax.get_ylim()[1] # Get the current maximum y value | |
y_max_rounded = np.ceil(y_max / 5) * 5 # Round y_max up to the next highest multiple of 5 | |
ax.set_ylim(y_min, y_max_rounded) | |
# Improve layout spacing | |
plt.tight_layout() | |
# Display the plot | |
st.pyplot(fig) | |
################################################################################################################################################## | |
# WER per audio duration | |
# calculate average WER per audio duration bucket for the best and worse commercial and free systems | |
selected_systems = [free_system_with_best_wer, commercial_system_with_best_wer] | |
# filter out results for selected systems | |
df_per_sample_selected_systems = df_per_sample[df_per_sample['system'].isin(selected_systems)] | |
# calculate average WER per audio duration for the best system | |
# add column with audio duration in seconds rounded to nearest integer value. | |
audio_duration_buckets = [1,2,3,4,5,10,15,20,30,40,50,60] | |
# map audio duration to the closest bucket | |
df_per_sample_selected_systems['audio_duration_buckets'] = df_per_sample_selected_systems['audio_duration'].apply(lambda x: min(audio_duration_buckets, key=lambda y: abs(x-y))) | |
# calculate average WER per audio duration bucket | |
df_per_sample_wer_audio = df_per_sample_selected_systems.groupby(['system', 'audio_duration_buckets'])['WER'].mean().reset_index() | |
# add column with number of samples for specific audio bucket size | |
df_per_sample_wer_audio['number_of_samples'] = df_per_sample_selected_systems.groupby(['system', 'audio_duration_buckets'])['WER'].count().values | |
df_per_sample_wer_audio = df_per_sample_wer_audio.sort_values(by='audio_duration_buckets') | |
# round values in WER column in df_per_sample_wer to 2 decimal places | |
df_per_sample_wer_audio['WER'].round(2) | |
# transform df_per_sample_wer. Use system values as columns, while audio_duration_buckets as main index | |
df_per_sample_wer_audio_pivot = df_per_sample_wer_audio.pivot(index='audio_duration_buckets', columns='system', values='WER') | |
df_per_sample_wer_audio_pivot = df_per_sample_wer_audio_pivot.round(2) | |
df_per_sample_wer_audio_pivot['number_of_samples'] = df_per_sample_wer_audio[df_per_sample_wer_audio['system']==free_system_with_best_wer].groupby('audio_duration_buckets')['number_of_samples'].sum().values | |
# put number_of_samples as the first column after index | |
df_per_sample_wer_audio_pivot = df_per_sample_wer_audio_pivot[['number_of_samples'] + [col for col in df_per_sample_wer_audio_pivot.columns if col != 'number_of_samples']] | |
# print dataframe in streamlit | |
st.dataframe(df_per_sample_wer_audio_pivot) | |
# create scatter plot with WER in function of audio duration | |
fig, ax = plt.subplots() | |
for system in selected_systems: | |
subset = df_per_sample_wer_audio[df_per_sample_wer_audio['system'] == system] | |
ax.scatter(subset['audio_duration_buckets'], subset['WER'], label=system, s=subset['number_of_samples']*0.5) | |
ax.set_xlabel('Audio Duration [s]') | |
ax.set_ylabel('WER (%)') | |
ax.set_title('WER in function of audio duration.') | |
# place legend outside the plot on the right | |
ax.legend(title='System', bbox_to_anchor=(1.05, 1), loc='upper left') | |
st.pyplot(fig) | |
################################################################################################################################################## | |
# WER per speech rate | |
# speech rate chars unique values | |
audio_feature_to_analyze = 'speech_rate_words' | |
audio_feature_unit = ' [words/s]' | |
metric = 'WER' | |
metric_unit = ' (%)' | |
no_of_buckets = 10 | |
# calculate average WER per audio duration bucket for the best and worse commercial and free systems | |
selected_systems = [free_system_with_best_wer, commercial_system_with_best_wer] | |
df_per_sample_wer_feature_pivot, df_per_sample_wer_feature = calculate_wer_per_audio_feature(df_per_sample, selected_systems, audio_feature_to_analyze, metric, no_of_buckets) | |
# print dataframe in streamlit | |
st.dataframe(df_per_sample_wer_feature_pivot) | |
# Set a threshold to remove outliers - here we use the 97th percentile of WER | |
threshold = df_per_sample_wer_feature[metric].quantile(0.97) | |
# Remove data points with WER greater than the threshold | |
filtered_df = df_per_sample_wer_feature[df_per_sample_wer_feature[metric] <= threshold] | |
# Create figure and axis with larger size | |
fig, ax = plt.subplots(figsize=(10, 7)) | |
# Scatter plot for each system | |
for system in selected_systems: | |
subset = filtered_df[filtered_df['system'] == system] | |
ax.scatter(subset[audio_feature_to_analyze], | |
subset[metric], | |
label=system, | |
s=subset['number_of_samples'] * 0.5, | |
alpha=0.6) # Set alpha for better visibility of overlapping points | |
# Adding a trend line using LOWESS | |
lowess = sm.nonparametric.lowess | |
trend = lowess(subset[metric], subset[audio_feature_to_analyze], frac=0.3) # Adjust frac to control smoothing | |
ax.plot(trend[:, 0], trend[:, 1], label=f'{system} Trend', linestyle='-', linewidth=2) | |
# Set axis labels with improved formatting for readability | |
ax.set_xlabel(audio_feature_to_analyze.replace('_', ' ').capitalize() + ' ' + audio_feature_unit ) | |
ax.set_ylabel(metric + ' ' + metric_unit ) | |
# Set an improved title that is more informative | |
ax.set_title('Word Error Rate (WER) vs Speech Rate\nBest Performing Free and Paid Systems', fontsize=14) | |
# increase granularity of y-axis to 20 points per whole range | |
# Set y-axis limits: lower bound at 0, upper bound to next highest multiple of 5 | |
y_min = 0 | |
y_max = ax.get_ylim()[1] # Get the current maximum y value | |
y_max_rounded = np.ceil(y_max / 5) * 5 # Round y_max up to the next highest multiple of 5 | |
ax.set_ylim(y_min, y_max_rounded) | |
# Add a grid to improve readability and alignment | |
ax.grid(True, linestyle='--', alpha=0.7) | |
# Place legend outside the plot area to prevent overlapping with data points | |
ax.legend(title='System', loc='upper right', bbox_to_anchor=(0.95, 1)) | |
# Add tight layout to improve spacing between elements | |
fig.tight_layout() | |
# Display the plot | |
st.pyplot(fig) | |
################################################################################################################################################ | |
# WER PER GENDER | |
#selected_systems = [free_system_with_best_wer, commercial_system_with_best_wer, free_system_with_worst_wer, commercial_system_with_worst_wer] | |
selected_systems = df_per_sample['system'].unique() | |
df_per_sample_wer_gender_pivot, df_available_samples_per_category_per_system, no_samples_per_category = calculate_wer_per_meta_category(df_per_sample, selected_systems, 'WER', 'speaker_gender') | |
#print(df_per_sample_wer_gender_pivot) | |
#print(no_samples_per_category) | |
# print dataframe in streamlit | |
st.write("Number of samples per category") | |
for system in selected_systems: | |
st.write(f"System: {system}") | |
df_available_samples_per_category = df_available_samples_per_category_per_system[system] | |
st.dataframe(df_available_samples_per_category) | |
st.write("Number of samples analyzed per category - {}".format(no_samples_per_category)) | |
st.dataframe(df_per_sample_wer_gender_pivot) | |
#print(difference_values) | |
#print(selected_systems) | |
# create the scatter plot | |
# the x axis should be the systems from selected_systems | |
# the y axis should be the difference from difference_values | |
# each system should have a different color | |
fig, ax = plt.subplots() | |
difference_values = df_per_sample_wer_gender_pivot['Difference'][:-3] | |
selected_systems = df_per_sample_wer_gender_pivot.index[:-3] | |
ax.scatter(difference_values, selected_systems, c=range(len(selected_systems)), cmap='viridis') | |
ax.set_ylabel('ASR System') | |
ax.set_xlabel('Difference in WER across speaker gender') | |
ax.set_title('ASR systems perfomance bias for genders.') | |
# add labels with difference in WER values | |
for i, txt in enumerate(difference_values): | |
ax.annotate(txt, (difference_values[i], selected_systems[i]), fontsize=5, ha='right') | |
st.pyplot(fig) | |
##################################################################################################################################################################################### | |
# WER per age | |
df_per_sample_wer_age_pivot, df_available_samples_per_category_per_system, no_samples_per_category = calculate_wer_per_meta_category(df_per_sample, selected_systems,'WER','speaker_age') | |
#print(df_per_sample_wer_age_pivot) | |
#print(no_samples_per_category) | |
# print dataframe in streamlit | |
st.write("Number of samples per category") | |
for system in selected_systems: | |
st.write(f"System: {system}") | |
df_available_samples_per_category = df_available_samples_per_category_per_system[system] | |
st.dataframe(df_available_samples_per_category) | |
st.write("Number of samples analyzed per category - {}".format(no_samples_per_category)) | |
st.write("WER per age") | |
st.dataframe(df_per_sample_wer_age_pivot) | |
# extract columns from df_per_sample_wer_age_pivot for selected_systems (skip the last 3 values corresponding to median, average and std values) | |
#print(selected_systems) | |
# create the scatter plot | |
# the x axis should be the systems from selected_systems | |
# the y axis should be the difference from difference_values | |
# each system should have a different color | |
fig, ax = plt.subplots() | |
difference_values = df_per_sample_wer_age_pivot['Std Dev'][:-3] | |
selected_systems = df_per_sample_wer_age_pivot.index[:-3] | |
ax.scatter(difference_values,selected_systems , c=range(len(selected_systems)), cmap='viridis') | |
ax.set_ylabel('ASR System') | |
ax.set_xlabel('Standard Deviation in WER across speaker age') | |
ax.set_title('ASR systems perfomance bias for age groups') | |
# add labels with difference in WER values | |
for i, txt in enumerate(difference_values): | |
ax.annotate(txt, (difference_values[i], selected_systems[i]), fontsize=5, ha='right') | |
st.pyplot(fig) | |
# READ vs CONVERSIONAL SPEECH AVERAGE WER | |
# Hallucinations rate per system | |
with interactive_comparison: | |
st.title("Interactive comparison of ASR Systems performance") | |
st.markdown(COMPARISON_INFO, unsafe_allow_html=True) | |
st.title("Plots for analyzing ASR Systems performance") | |
datasets = datasets_secret + datasets_public | |
dataset = st.selectbox("Select Dataset", datasets, index=datasets.index('amu-cai/pl-asr-bigos-v2-secret'), key="select_dataset_interactive_comparison") | |
# read the latest results for the selected dataset | |
print("Reading the latest results for dataset: ", dataset) | |
df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping) | |
# filter only the ref_type and norm_type we want to analyze | |
df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)] | |
# filter only the ref_type and norm_type we want to analyze | |
df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)] | |
evaluated_systems_list = df_per_sample["system"].unique() | |
print(evaluated_systems_list) | |
df_evaluated_systems = retrieve_asr_systems_meta_from_the_catalog(evaluated_systems_list) | |
print(df_evaluated_systems) | |
# read available options to analyze for specific dataset | |
splits = list(df_per_dataset_all['subset'].unique()) # Get the unique splits | |
norm_types = list(df_per_dataset_all['norm_type'].unique()) # Get the unique norm_types | |
ref_types = list(df_per_dataset_all['ref_type'].unique()) # Get the unique ref_types | |
systems = list(df_per_dataset_all['system'].unique()) # Get the unique systems | |
metrics = list(df_per_dataset_all.columns[7:]) # Get the unique metrics | |
# Select the system to display. More than 1 system can be selected. | |
systems_selected = st.multiselect("Select ASR Systems", systems) | |
# Select the metric to display | |
metric = st.selectbox("Select Metric", metrics, index=metrics.index('WER')) | |
# Select the normalization type | |
norm_type = st.selectbox("Select Normalization Type", norm_types, index=norm_types.index('all')) | |
# Select the reference type | |
ref_type = st.selectbox("Select Reference Type", ref_types, index=ref_types.index('orig')) | |
enable_labels = st.checkbox("Enable labels on radar plot", value=True) | |
enable_bar_chart = st.checkbox("Enable bar chart", value=True) | |
enable_polar_plot = st.checkbox("Enable radar plot", value=True) | |
orientation = st.selectbox("Select orientation", ["vertical", "horizontal"], index=0) | |
if enable_polar_plot: | |
if metric: | |
if systems_selected: | |
create_radar_plot(df_per_dataset_all, enable_labels, systems_selected, metric, norm_type, ref_type) | |
if enable_bar_chart: | |
if metric: | |
if systems_selected: | |
create_bar_chart(df_per_dataset_all, systems_selected , metric, norm_type, ref_type, orientation) | |