import streamlit as st import cv2 import numpy as np import tensorflow as tf from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import img_to_array from PIL import Image # Charger le modèle pré-entraîné model = load_model('plant_diseases.h5') # Classes de labels (remplacez par vos propres classes) class_labels = ['Piment: Bacterial_spot', 'Piment: healthy', 'Pomme de terre: Early_blight', 'Pomme de terre: Late_blight', 'Pomme de terre: Healthy', 'Tomate: Bacterial Spot', 'Tomate: Early Blight', 'Tomate: Late Blight', 'Tomate: Leaf mold', 'Tomate: Septoria leaf spot', 'Tomate: Siper mites', 'Tomate: Spot', "Tomate: Yellow Leaf Curl", 'Tomate: Virus Mosaïque', 'Tomate: Healthy'] def preprocess_image(image, image_size=(224, 224)): # Convertir l'image en niveaux de gris image = np.array(image.convert('L')) # Redimensionner l'image image = cv2.resize(image, image_size) # Redimensionner pour le modèle image = img_to_array(image) image /= 255.0 image = np.expand_dims(image, axis=0) return image st.title("Classification des Maladies des Plantes") st.write("Téléchargez une image de plante pour la classification") uploaded_file = st.file_uploader("Choisissez une image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Afficher l'image téléchargée image = Image.open(uploaded_file) st.image(image, caption='Image téléchargée', use_column_width=True) st.write("Classification en cours...") # Prétraiter l'image processed_image = preprocess_image(image) # Faire la prédiction predictions = model.predict(processed_image) probabilities = predictions[0] # Afficher les probabilités de chaque classe for i, label in enumerate(class_labels): if probabilities[i] > 0: st.write(f"{label}: {probabilities[i]:.2f}") # Afficher le résultat de la classe prédite predicted_class = class_labels[np.argmax(probabilities)] st.write(f"Classe prédite: {predicted_class}")