analytics-jiten
commited on
Commit
•
06f29dc
1
Parent(s):
06effc4
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
import torch
|
6 |
+
|
7 |
+
image_processor = AutoImageProcessor.from_pretrained('hustvl/yolos-small')
|
8 |
+
model = AutoModelForObjectDetection.from_pretrained('hustvl/yolos-small')
|
9 |
+
|
10 |
+
colors = ["red",
|
11 |
+
"orange",
|
12 |
+
"yellow",
|
13 |
+
"green",
|
14 |
+
"blue",
|
15 |
+
"indigo",
|
16 |
+
"violet",
|
17 |
+
"brown",
|
18 |
+
"black",
|
19 |
+
"slategray",
|
20 |
+
]
|
21 |
+
|
22 |
+
# Resized image width
|
23 |
+
WIDTH = 600
|
24 |
+
|
25 |
+
def detect(image):
|
26 |
+
width, height = image.size
|
27 |
+
ratio = float(WIDTH) / float(width)
|
28 |
+
new_h = height * ratio
|
29 |
+
|
30 |
+
image = image.resize((int(WIDTH), int(new_h)), Image.Resampling.LANCZOS)
|
31 |
+
|
32 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
33 |
+
outputs = model(**inputs)
|
34 |
+
|
35 |
+
# convert outputs to COCO API
|
36 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
37 |
+
results = image_processor.post_process_object_detection(outputs,
|
38 |
+
threshold=0.9,
|
39 |
+
target_sizes=target_sizes)[0]
|
40 |
+
|
41 |
+
draw = ImageDraw.Draw(image)
|
42 |
+
|
43 |
+
# label and the count
|
44 |
+
counts = {}
|
45 |
+
|
46 |
+
for score, label in zip(results["scores"], results["labels"]):
|
47 |
+
label_name = model.config.id2label[label.item()]
|
48 |
+
if label_name not in counts:
|
49 |
+
counts[label_name] = 0
|
50 |
+
counts[label_name] += 1
|
51 |
+
|
52 |
+
count_results = {k: v for k, v in (sorted(counts.items(), key=lambda item: item[1], reverse=True)[:10])}
|
53 |
+
label2color = {}
|
54 |
+
for idx, label in enumerate(count_results):
|
55 |
+
label2color[label] = colors[idx]
|
56 |
+
|
57 |
+
for label, box in zip(results["labels"], results["boxes"]):
|
58 |
+
label_name = model.config.id2label[label.item()]
|
59 |
+
|
60 |
+
if label_name in count_results:
|
61 |
+
box = [round(i, 4) for i in box.tolist()]
|
62 |
+
x1, y1, x2, y2 = tuple(box)
|
63 |
+
draw.rectangle((x1, y1, x2, y2), outline=label2color[label_name], width=2)
|
64 |
+
draw.text((x1, y1), label_name, fill="white")
|
65 |
+
|
66 |
+
df = pd.DataFrame({
|
67 |
+
'label': [label for label in count_results],
|
68 |
+
'counts': [counts[label] for label in count_results]
|
69 |
+
})
|
70 |
+
|
71 |
+
return image, df, count_results
|
72 |
+
|
73 |
+
demo = gr.Interface(
|
74 |
+
fn=detect,
|
75 |
+
examples=["examples/football.jpg", "examples/cats.jpg"],
|
76 |
+
inputs=[gr.inputs.Image(label="Input image", type="pil")],
|
77 |
+
outputs=[gr.Image(label="Output image"), gr.BarPlot(show_label=False, x="label", y="counts", x_title="Labels", y_title="Counts", vertical=False), gr.Textbox(show_label=False)],
|
78 |
+
title="YOLO Object Detection",
|
79 |
+
cache_examples=False
|
80 |
+
)
|
81 |
+
|
82 |
+
demo.launch()
|