analytics-jiten commited on
Commit
8f76218
1 Parent(s): cca1555

Upload 5 files

Browse files
Files changed (5) hide show
  1. __init__.py +3 -0
  2. index.py +42 -0
  3. my_dashboard.py +313 -0
  4. videostream.py +112 -0
  5. videostream_utils.py +303 -0
__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .index import app
2
+
3
+
index.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .my_dashboard import dashboard as my_dashboard
2
+ from typing import Dict, Callable
3
+
4
+
5
+ app_routes = {
6
+ "/": main_layout,
7
+ "/my_dashboard": my_dashboard,
8
+ }
9
+
10
+ def app() -> Dict[str, Callable]:
11
+ return app_routes
12
+
13
+
14
+ pn.extension(sizing_mode="stretch_width")
15
+
16
+ nav_markdown = """
17
+ # Navigation
18
+ - [My Dashboard](/my_dashboard)
19
+ """
20
+
21
+ navigation = pn.Markdown(nav_markdown)
22
+
23
+ main_layout = pn.Column(
24
+ navigation,
25
+ # other components and layouts
26
+ )
27
+
28
+ INTRO = """
29
+ # Awesome Panel on Hugging Face Spaces
30
+ ... (rest of the content)
31
+ """
32
+
33
+ some_component = pn.panel(INTRO)
34
+
35
+
36
+
37
+ template = pn.template.FastListTemplate(
38
+ site="Awesome Panel 🤗", title="Hello Hugging Face World", main=[some_component],
39
+ favicon="https://sharing.awesome-panel.org/favicon.ico", accent="#fef3c7", header_color="#4b5563"
40
+ )
41
+
42
+ app = pn.serve({'/': template, '/my_dashboard': my_dashboard_app}, return_views=True)
my_dashboard.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import altair as alt
2
+ import pandas as pd
3
+ import panel as pn
4
+
5
+ # Load the Panel extension
6
+
7
+ pn.extension('vega')
8
+
9
+
10
+ # Load the dataset
11
+ data = pd.read_csv("/Users/kenzabaddou/Downloads/archive/marketing_campaign.csv", sep=";")
12
+
13
+ # Data cleaning
14
+ data = data.rename(columns=lambda x: x.strip()) # Remove leading and trailing spaces from column names
15
+ data = data.dropna(subset=['Income'])
16
+ mean_income = data['Income'].mean()
17
+ data['Income'] = data['Income'].fillna(mean_income)
18
+ data['total_spent'] = data[['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds']].sum(axis=1)
19
+
20
+ # Define widgets
21
+ education_dropdown = alt.binding_select(options=sorted(data['Education'].unique()), name='Education Level:')
22
+ education_select = alt.selection_single(fields=['Education'], bind=education_dropdown, name='Select')
23
+
24
+ # New widget: marital status dropdown
25
+ marital_status_dropdown = alt.binding_select(options=sorted(data['Marital_Status'].unique()), name='Marital Status:')
26
+ marital_status_select = alt.selection_single(fields=['Marital_Status'], bind=marital_status_dropdown, name='Select')
27
+
28
+ # New widget: range slider for number of web visits
29
+ num_web_visits_slider = alt.binding_range(min=0, max=data['NumWebVisitsMonth'].max(), step=1, name='Web Visits per Month:')
30
+ num_web_visits_select = alt.selection_single(fields=['NumWebVisitsMonth'], bind=num_web_visits_slider, name='Select')
31
+
32
+ # Add new widgets for product selection
33
+ products = ['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds']
34
+ product_x_dropdown = alt.binding_select(options=products, name='Product X:')
35
+ product_x_select = alt.selection_single(fields=['x_product'], bind=product_x_dropdown, init={'x_product': 'MntWines'})
36
+ product_y_dropdown = alt.binding_select(options=products, name='Product Y:')
37
+ product_y_select = alt.selection_single(fields=['y_product'], bind=product_y_dropdown, init={'y_product': 'MntMeatProducts'})
38
+
39
+
40
+ # Define views
41
+
42
+ # View 1: Bar chart of customer distribution by education level
43
+ education_chart = alt.Chart(data).mark_bar().encode(
44
+ x=alt.X('Education:N', title='Education Level'),
45
+ y=alt.Y('count():Q', title='Number of Customers'),
46
+ color='Education:N'
47
+ ).properties(title='Customer Distribution by Education Level')
48
+
49
+
50
+ # Define widgets
51
+ education_dropdown = alt.binding_select(options=sorted(data['Education'].unique()), name='Education Level:')
52
+ education_select = alt.selection_single(fields=['Education'], bind=education_dropdown, name='Select')
53
+ income_slider = alt.binding_range(min=0, max=data['Income'].max(), step=1000, name='Annual Income:')
54
+ income_select = alt.selection_single(fields=['Income'], bind=income_slider, name='Select')
55
+
56
+ # View 2: Scatter plot of customer annual income and total amount spent on products (with interaction)
57
+ scatter_chart = alt.Chart(data).mark_circle().encode(
58
+ x=alt.X('Income:Q', title='Annual Income'),
59
+ y=alt.Y('total_spent:Q', title='Total Amount Spent on Products'),
60
+ color='Education:N',
61
+ tooltip=[
62
+ alt.Tooltip('Education'),
63
+ alt.Tooltip('Marital_Status'),
64
+ alt.Tooltip('Income', format='$,.0f'),
65
+ alt.Tooltip('total_spent', format='$,.0f')
66
+ ]
67
+ ).properties(title='Customer Annual Income vs Amount Spent on Products').add_selection(
68
+ education_select, income_select, marital_status_select, num_web_visits_select
69
+ ).transform_filter(
70
+ education_select
71
+ ).transform_filter(
72
+ income_select
73
+ ).transform_filter(
74
+ marital_status_select
75
+ ).transform_filter(
76
+ num_web_visits_select
77
+ )
78
+
79
+
80
+ # Define linked selection
81
+ brush = alt.selection(type='interval')
82
+
83
+ # View 5: Bar chart - Average Total Spending per Education Level (linked to scatter chart)
84
+ avg_spending_by_education = alt.Chart(data).mark_bar().encode(
85
+ x=alt.X('Education:N', title='Education Level'),
86
+ y=alt.Y('mean(total_spent):Q', title='Average Total Spending'),
87
+ tooltip=['Education', 'mean(total_spent):Q']
88
+ ).properties(title='Average Total Spending per Education Level').add_selection(
89
+ brush
90
+ ).transform_filter(
91
+ education_select
92
+ )
93
+
94
+ # View 6: Yearly Total Amount Spent on Products (linked to enrollment chart)
95
+ yearly_total_spent_chart = alt.Chart(data).mark_line().encode(
96
+ x=alt.X('year(Dt_Customer):O', title='Year'),
97
+ y=alt.Y('sum(total_spent):Q', title='Total Amount Spent'),
98
+ tooltip=['year(Dt_Customer):O', 'sum(total_spent):Q']
99
+ ).transform_filter(
100
+ education_select
101
+ )
102
+
103
+ # View 3: Timeline chart of new customer enrollments (with linked highlighting)
104
+ enrollment_chart = alt.Chart(data).mark_line().encode(
105
+ x=alt.X('year(Dt_Customer):T', title='Year of Enrollment'),
106
+ y=alt.Y('count():Q', title='Number of New Enrollments'),
107
+ color='Marital_Status:N').properties(title='New Customer Enrollments Over Time').add_selection(
108
+ brush, education_select, income_select, marital_status_select, num_web_visits_select).transform_filter(
109
+ education_select).transform_filter(income_select).transform_filter(marital_status_select).transform_filter(
110
+ num_web_visits_select)
111
+
112
+ # New View: Average spending per marital status (with linked highlighting)
113
+
114
+ avg_spending_by_marital_status = alt.Chart(data).mark_bar().encode(
115
+ x=alt.X('Marital_Status:N', title='Marital Status'),
116
+ y=alt.Y('mean(total_spent):Q', title='Average Total Spending'),
117
+ color='Marital_Status:N',
118
+ tooltip=['Marital_Status', 'mean(total_spent):Q']).properties(title='Average Total Spending per Marital Status').add_selection(brush)
119
+
120
+ import pandas as pd
121
+ import altair as alt
122
+
123
+
124
+ # Convert the 'Dt_Customer' column to datetime format
125
+ data['Dt_Customer'] = pd.to_datetime(data['Dt_Customer'])
126
+
127
+ # Create 'total_spent' column by summing up spending in different product categories
128
+ data['total_spent'] = data[['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds']].sum(axis=1)
129
+
130
+ # Calculate the average spending for each combination of Teenhome, Kidhome, and Marital_Status
131
+ avg_spending = data.groupby(['Teenhome', 'Kidhome', 'Marital_Status'])['total_spent'].mean().reset_index()
132
+
133
+ # Create a hover selection
134
+ hover = alt.selection_single(on='mouseover', nearest=True, empty='none')
135
+
136
+ # Create a selection for the dropdown
137
+ marital_status_dropdown = alt.binding_select(options=sorted(data['Marital_Status'].unique()), name='Marital Status:')
138
+ marital_status_select = alt.selection_single(fields=['Marital_Status'], bind=marital_status_dropdown, init={'Marital_Status': 'Married'})
139
+
140
+ # Create a grouped bar chart for kids
141
+ chart_kids = alt.Chart(avg_spending).mark_bar().encode(
142
+ x=alt.X('Kidhome:O', title='Number of Kids at Home'),
143
+ y=alt.Y('total_spent:Q', title='Average Spending'),
144
+ color=alt.condition(hover, 'Kidhome:O', alt.value('lightgray'), legend=alt.Legend(title='Number of Kids at Home')),
145
+ tooltip=['Teenhome', 'Kidhome', 'total_spent', 'Marital_Status']
146
+ ).properties(title='Average Spending by Number of Kids at Home (Filtered by Marital Status)').add_selection(
147
+ hover
148
+ )
149
+
150
+ # Create a grouped bar chart for teens
151
+ chart_teens = alt.Chart(avg_spending).mark_bar().encode(
152
+ x=alt.X('Teenhome:O', title='Number of Teens at Home'),
153
+ y=alt.Y('total_spent:Q', title='Average Spending'),
154
+ color=alt.condition(hover, 'Teenhome:O', alt.value('lightgray'), legend=alt.Legend(title='Number of Teens at Home')),
155
+ tooltip=['Teenhome', 'Kidhome', 'total_spent', 'Marital_Status']
156
+ ).properties(title='Average Spending by Number of Teens at Home (Filtered by Marital Status)').add_selection(
157
+ hover
158
+ )
159
+
160
+ # Combine the charts
161
+ concat_chart = alt.hconcat(chart_kids, chart_teens).add_selection(
162
+ marital_status_select
163
+ ).transform_filter(
164
+ marital_status_select
165
+ )
166
+
167
+
168
+ """scatter_plot = alt.Chart(data).mark_circle().encode(
169
+ x=alt.X('NumWebVisitsMonth:Q', title='Number of Web Visits per Month'),
170
+ y=alt.Y('NumWebPurchases:Q', title='Number of Web Purchases'),
171
+ size=alt.Size('count():Q', scale=alt.Scale(range=[50, 500]), legend=alt.Legend(title='Number of Customers')),
172
+ color=alt.Color('count():Q', scale=alt.Scale(scheme='viridis'), legend=None),
173
+ tooltip=['NumWebVisitsMonth', 'NumWebPurchases', 'count()']
174
+ ).properties(title='Scatter Plot of Web Visits per Month vs. Web Purchases')
175
+
176
+ scatter_plot.interactive()"""
177
+
178
+ # Define dropdown selection for marital status
179
+ marital_status_dropdown = alt.binding_select(options=data['Marital_Status'].unique().tolist(), name='Marital Status: ')
180
+ marital_status_selection = alt.selection_single(fields=['Marital_Status'], bind=marital_status_dropdown, name='Marital_Status', init={'Marital_Status': data['Marital_Status'].iloc[0]})
181
+
182
+ # Add a scatter plot and filter by marital status
183
+ scatter_plot_filtered = alt.Chart(data).mark_circle().encode(
184
+ x=alt.X('NumWebVisitsMonth:Q', title='Number of Web Visits per Month'),
185
+ y=alt.Y('NumWebPurchases:Q', title='Number of Web Purchases'),
186
+ size=alt.Size('count():Q', scale=alt.Scale(range=[50, 500]), legend=alt.Legend(title='Number of Customers')),
187
+ color=alt.Color('count():Q', scale=alt.Scale(scheme='viridis'), legend=None),
188
+ tooltip=['NumWebVisitsMonth', 'NumWebPurchases', 'count()']
189
+ ).properties(title='Scatter Plot of Web Visits per Month vs. Web Purchases Filtered by Marital Status').transform_filter(
190
+ marital_status_selection
191
+ )
192
+
193
+ # Add interactivity and the marital status selection to the scatter plot
194
+ interactive_scatter_plot_filtered = scatter_plot_filtered.interactive().add_selection(marital_status_selection)
195
+ interactive_scatter_plot_filtered
196
+
197
+
198
+ # Group by 'Dt_Customer' and calculate average spending for new and returning customers
199
+ new_customers = data[data['NumWebPurchases'] == 0].groupby('Dt_Customer')['total_spent'].mean().reset_index()
200
+ returning_customers = data[data['NumWebPurchases'] > 0].groupby('Dt_Customer')['total_spent'].mean().reset_index()
201
+
202
+
203
+ # new_customers and returning_customers DataFrames
204
+ # Create line charts for new and returning customers without filtering
205
+ new_line = alt.Chart(new_customers).mark_line().encode(
206
+ x=alt.X('Dt_Customer:T', title='Date'),
207
+ y=alt.Y('total_spent:Q', title='Average Spending'),
208
+ color=alt.value('blue'),
209
+ tooltip=['Dt_Customer', 'total_spent']
210
+ ).properties(title='New Customers')
211
+
212
+ returning_line = alt.Chart(returning_customers).mark_line().encode(
213
+ x=alt.X('Dt_Customer:T', title='Date'),
214
+ y=alt.Y('total_spent:Q', title='Average Spending'),
215
+ color=alt.value('green'),
216
+ tooltip=['Dt_Customer', 'total_spent']
217
+ ).properties(title='Returning Customers')
218
+
219
+ # Display the charts side by side
220
+ combined_chart = alt.hconcat(new_line, returning_line)
221
+ combined_chart
222
+
223
+ # Merge Marital_Status to new_customers and returning_customers DataFrames
224
+
225
+ new_customers = new_customers.merge(data[['Dt_Customer', 'Marital_Status']], on='Dt_Customer', how='left')
226
+ returning_customers = returning_customers.merge(data[['Dt_Customer', 'Marital_Status']], on='Dt_Customer', how='left')
227
+
228
+ # Filter data by marital status using transform_filter within the charts
229
+ new_line_filtered = alt.Chart(new_customers).mark_line().encode(
230
+ x=alt.X('Dt_Customer:T', title='Date'),
231
+ y=alt.Y('total_spent:Q', title='Average Spending'),
232
+ color=alt.value('blue'),
233
+ tooltip=['Dt_Customer', 'total_spent']
234
+ ).properties(title='New Customers').transform_filter(
235
+ marital_status_selection
236
+ )
237
+
238
+ returning_line_filtered = alt.Chart(returning_customers).mark_line().encode(
239
+ x=alt.X('Dt_Customer:T', title='Date'),
240
+ y=alt.Y('total_spent:Q', title='Average Spending'),
241
+ color=alt.value('green'),
242
+ tooltip=['Dt_Customer', 'total_spent']
243
+ ).properties(title='Returning Customers').transform_filter(
244
+ marital_status_selection
245
+ )
246
+
247
+ # Add interactivity for panning and zooming
248
+ interactive_chart_filtered = alt.layer(new_line_filtered, returning_line_filtered).resolve_scale(y='shared').interactive().add_selection(marital_status_selection)
249
+
250
+ # Combine the interactive chart, the legend, and the marital status selection
251
+ # Create legend
252
+ legend = alt.Chart(pd.DataFrame({'legend': ['New Customers', 'Returning Customers'], 'color': ['blue', 'green']})).mark_point().encode(
253
+ x=alt.value(20),
254
+ y=alt.Y('legend', title=None),
255
+ color=alt.Color('color', scale=None),
256
+ tooltip=['legend']
257
+ )
258
+
259
+ # Combine the interactive chart, the legend, and the marital status selection
260
+ final_chart_filtered = alt.hconcat(interactive_chart_filtered, legend).properties(title='Average Spending of New vs Returning Customers by Marital Status')
261
+ final_chart_filtered
262
+
263
+ import panel as pn
264
+ pn.extension('vega')
265
+
266
+
267
+ # Define dashboard layout
268
+ dashboard = pn.Column(
269
+ pn.Row(
270
+ pn.Column(
271
+ education_chart,
272
+ avg_spending_by_education,
273
+ avg_spending_by_marital_status,
274
+ width=350
275
+ ),
276
+ pn.Column(
277
+ scatter_chart,
278
+ enrollment_chart,
279
+ width=700
280
+ ),
281
+ ),
282
+ pn.Row(
283
+ concat_chart,
284
+ width=1000
285
+ ),
286
+ pn.Row(
287
+ final_chart_filtered,
288
+ width=1000
289
+ ),
290
+ )
291
+
292
+
293
+ # Display dashboard
294
+ dashboard.servable()
295
+
296
+ app = pn.serve(dashboard, return_views=True)
297
+
298
+
299
+ dashboard = pn.Column(
300
+ pn.Row(
301
+ pn.Column(education_chart, avg_spending_by_education, interactive_scatter_plot_filtered, width=350),
302
+ scatter_chart, width=700
303
+ ),
304
+
305
+ pn.Row(
306
+ avg_spending_by_marital_status, concat_chart, width=1000
307
+ ),
308
+
309
+ pn.Row(
310
+ enrollment_chart, final_chart_filtered, width=1000
311
+ )
312
+ )
313
+
videostream.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """The VideoStreamInterface provides an easy way to apply transforms to a video stream"""
2
+ import numpy as np
3
+ import panel as pn
4
+ import param
5
+ import skimage
6
+ from PIL import Image, ImageFilter
7
+ from skimage import data, filters
8
+ from skimage.color.adapt_rgb import adapt_rgb, each_channel
9
+ from skimage.draw import rectangle
10
+ from skimage.exposure import rescale_intensity
11
+ from skimage.feature import Cascade
12
+ from videostream_utils import PILImageTransform, NumpyImageTransform, VideoStreamInterface
13
+
14
+ pn.extension("terminal", sizing_mode="stretch_width")
15
+
16
+ ACCENT = "#fef3c7"
17
+
18
+
19
+ class GaussianBlur(PILImageTransform):
20
+ """Gaussian Blur
21
+ https://pillow.readthedocs.io/en/stable/reference/ImageFilter.html#PIL.ImageFilter.GaussianBlur
22
+ """
23
+
24
+ radius = param.Integer(default=2, bounds=(0, 10))
25
+
26
+ def transform(self, image: Image):
27
+ return image.filter(ImageFilter.GaussianBlur(radius=self.radius))
28
+
29
+
30
+ class GrayscaleTransform(NumpyImageTransform):
31
+ """GrayScale transform
32
+ https://scikit-image.org/docs/0.15.x/auto_examples/color_exposure/plot_rgb_to_gray.html
33
+ """
34
+
35
+ def transform(self, image: np.ndarray):
36
+ grayscale = skimage.color.rgb2gray(image[:, :, :3])
37
+ return skimage.color.gray2rgb(grayscale)
38
+
39
+
40
+ class SobelTransform(NumpyImageTransform):
41
+ """Sobel Transform
42
+ https://scikit-image.org/docs/0.15.x/auto_examples/color_exposure/plot_adapt_rgb.html
43
+ """
44
+
45
+ def transform(self, image):
46
+ @adapt_rgb(each_channel)
47
+ def sobel_each(image):
48
+ return filters.sobel(image)
49
+
50
+ return rescale_intensity(1 - sobel_each(image))
51
+
52
+
53
+ @pn.cache()
54
+ def get_detector():
55
+ """Returns the Cascade detector"""
56
+ trained_file = data.lbp_frontal_face_cascade_filename()
57
+ return Cascade(trained_file)
58
+
59
+ class FaceDetectionTransform(NumpyImageTransform):
60
+ """Face detection using a cascade classifier.
61
+ https://scikit-image.org/docs/0.15.x/auto_examples/applications/plot_face_detection.html
62
+ """
63
+
64
+ scale_factor = param.Number(1.4, bounds=(1.0, 2.0), step=0.1)
65
+ step_ratio = param.Integer(1, bounds=(1, 10))
66
+ size_x = param.Range(default=(60, 322), bounds=(10, 500))
67
+ size_y = param.Range(default=(60, 322), bounds=(10, 500))
68
+
69
+ def transform(self, image):
70
+ detector = get_detector()
71
+ detected = detector.detect_multi_scale(
72
+ img=image,
73
+ scale_factor=self.scale_factor,
74
+ step_ratio=self.step_ratio,
75
+ min_size=(self.size_x[0], self.size_y[0]),
76
+ max_size=(self.size_x[1], self.size_y[1]),
77
+ )
78
+
79
+ for patch in detected:
80
+ rrr, ccc = rectangle(
81
+ start=(patch["r"], patch["c"]),
82
+ extent=(patch["height"], patch["width"]),
83
+ shape=image.shape[:2],
84
+ )
85
+ image[rrr, ccc, 0] = 200
86
+
87
+ return image
88
+
89
+
90
+ component = VideoStreamInterface(
91
+ transforms=[
92
+ GaussianBlur,
93
+ GrayscaleTransform,
94
+ SobelTransform,
95
+ FaceDetectionTransform,
96
+ ]
97
+ )
98
+
99
+ component.video_stream.timeout=1000
100
+ component.video_stream.param.timeout.bounds=(250, 2000)
101
+
102
+ pn.template.FastListTemplate(
103
+ site="Awesome Panel 🤗",
104
+ title="VideoStream with transforms",
105
+ sidebar=[component.settings],
106
+ main=[
107
+ """Try a much, much faster version <a href="https://sharing.awesome-panel.org/MarcSkovMadsen/videostream-interface/app.html" target="_blank">here</a> powered by Webassembly.""",
108
+ component],
109
+ favicon="https://sharing.awesome-panel.org/favicon.ico",
110
+ accent=ACCENT,
111
+ header_color="#4b5563"
112
+ ).servable()
videostream_utils.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """The VideoStreamInterface provides an easy way to apply transforms to a video stream"""
2
+ import base64
3
+ import io
4
+ import time
5
+
6
+ import numpy as np
7
+ import panel as pn
8
+ import param
9
+ import PIL
10
+ from PIL import Image
11
+
12
+ HEIGHT = 400
13
+ WIDTH = 400
14
+ TIMEOUT = 250
15
+ ACCENT = "#fef3c7"
16
+
17
+
18
+ def to_instance(value, **params):
19
+ """Converts the value to an instance
20
+ Args:
21
+ value: A param.Parameterized class or instance
22
+ Returns:
23
+ An instance of the param.Parameterized class
24
+ """
25
+ if isinstance(value, param.Parameterized):
26
+ value.param.update(**params)
27
+ return value
28
+ return value(**params)
29
+
30
+
31
+ class Timer(pn.viewable.Viewer):
32
+ """Helper Component used to show duration trends"""
33
+
34
+ _trends = param.Dict()
35
+
36
+ def __init__(self, **params):
37
+ super().__init__()
38
+
39
+ self.last_updates = {}
40
+ self._trends = {}
41
+
42
+ self._layout = pn.Row(**params)
43
+
44
+ def time_it(self, name, func, *args, **kwargs):
45
+ """Measures the duration of the execution of the func function and reports it under the
46
+ name specified"""
47
+ start = time.time()
48
+ result = func(*args, **kwargs)
49
+ end = time.time()
50
+ duration = round(end - start, 2)
51
+ self._report(name=name, duration=duration)
52
+ return result
53
+
54
+ def inc_it(self, name):
55
+ """Measures the duration since the last time `inc_it` was called and reports it under the
56
+ specified name"""
57
+ start = self.last_updates.get(name, time.time())
58
+ end = time.time()
59
+ duration = round(end - start, 2)
60
+ self._report(name=name, duration=duration)
61
+ self.last_updates[name] = end
62
+
63
+ def _report(self, name, duration):
64
+ if not name in self._trends:
65
+ self._trends[name] = pn.indicators.Trend(
66
+ title=name,
67
+ data={"x": [1], "y": [duration]},
68
+ plot_color=ACCENT,
69
+ height=100,
70
+ width=150,
71
+ sizing_mode="fixed",
72
+ )
73
+ self.param.trigger("_trends")
74
+ else:
75
+ trend = self._trends[name]
76
+ next_x = max(trend.data["x"]) + 1
77
+ trend.stream({"x": [next_x], "y": [duration]}, rollover=10)
78
+
79
+ @pn.depends("_trends")
80
+ def _panel(self):
81
+ self._layout[:] = list(self._trends.values())
82
+ return self._layout
83
+
84
+ def __panel__(self):
85
+ return self._panel
86
+
87
+
88
+ class ImageTransform(pn.viewable.Viewer):
89
+ """Base class for image transforms."""
90
+
91
+ def __init__(self, **params):
92
+ super().__init__(**params)
93
+
94
+ with param.edit_constant(self):
95
+ self.name = self.__class__.name.replace("Transform", "")
96
+ self.view = self.create_view()
97
+
98
+ def __panel__(self):
99
+ return self.view
100
+
101
+ def run(self, image: str, height: int = HEIGHT, width: int = WIDTH) -> str:
102
+ """Transforms the base64 encoded jpg image to a base64 encoded jpg BytesIO object"""
103
+ raise NotImplementedError()
104
+
105
+ def create_view(self):
106
+ """Creates a view of the parameters of the transform to enable the user to configure them"""
107
+ return pn.Param(self, name=self.name)
108
+
109
+ def transform(self, image):
110
+ """Transforms the image"""
111
+ raise NotImplementedError()
112
+
113
+
114
+ class PILImageTransform(ImageTransform):
115
+ """Base class for PIL image transforms"""
116
+
117
+ @staticmethod
118
+ def to_pil_img(value: str, height=HEIGHT, width=WIDTH):
119
+ """Converts a base64 jpeg image string to a PIL.Image"""
120
+ encoded_data = value.split(",")[1]
121
+ base64_decoded = base64.b64decode(encoded_data)
122
+ image = Image.open(io.BytesIO(base64_decoded))
123
+ image.draft("RGB", (height, width))
124
+ return image
125
+
126
+ @staticmethod
127
+ def from_pil_img(image: Image):
128
+ """Converts a PIL.Image to a base64 encoded JPG BytesIO object"""
129
+ buff = io.BytesIO()
130
+ image.save(buff, format="JPEG")
131
+ return buff
132
+
133
+ def run(self, image: str, height: int = HEIGHT, width: int = WIDTH) -> io.BytesIO:
134
+ pil_img = self.to_pil_img(image, height=height, width=width)
135
+
136
+ transformed_image = self.transform(pil_img)
137
+
138
+ return self.from_pil_img(transformed_image)
139
+
140
+ def transform(self, image: PIL.Image) -> PIL.Image:
141
+ """Transforms the PIL.Image image"""
142
+ raise NotImplementedError()
143
+
144
+
145
+ class NumpyImageTransform(ImageTransform):
146
+ """Base class for np.ndarray image transforms"""
147
+
148
+ @staticmethod
149
+ def to_np_ndarray(image: str, height=HEIGHT, width=WIDTH) -> np.ndarray:
150
+ """Converts a base64 encoded jpeg string to a np.ndarray"""
151
+ pil_img = PILImageTransform.to_pil_img(image, height=height, width=width)
152
+ return np.array(pil_img)
153
+
154
+ @staticmethod
155
+ def from_np_ndarray(image: np.ndarray) -> io.BytesIO:
156
+ """Converts np.ndarray jpeg image to a jpeg BytesIO instance"""
157
+ if image.dtype == np.dtype("float64"):
158
+ image = (image * 255).astype(np.uint8)
159
+ pil_img = PIL.Image.fromarray(image)
160
+ return PILImageTransform.from_pil_img(pil_img)
161
+
162
+ def run(self, image: str, height: int = HEIGHT, width: int = WIDTH) -> io.BytesIO:
163
+ np_array = self.to_np_ndarray(image, height=height, width=width)
164
+
165
+ transformed_image = self.transform(np_array)
166
+
167
+ return self.from_np_ndarray(transformed_image)
168
+
169
+ def transform(self, image: np.ndarray) -> np.ndarray:
170
+ """Transforms the nd.array image"""
171
+ raise NotImplementedError()
172
+
173
+
174
+ class VideoStreamInterface(pn.viewable.Viewer):
175
+ """An easy to use interface for a VideoStream and a set of transforms"""
176
+
177
+ video_stream = param.ClassSelector(
178
+ class_=pn.widgets.VideoStream, constant=True, doc="The source VideoStream"
179
+ )
180
+
181
+ height = param.Integer(
182
+ HEIGHT,
183
+ bounds=(10, 2000),
184
+ step=10,
185
+ doc="""The height of the image converted and shown""",
186
+ )
187
+ width = param.Integer(
188
+ WIDTH,
189
+ bounds=(10, 2000),
190
+ step=10,
191
+ doc="""The width of the image converted and shown""",
192
+ )
193
+
194
+ transform = param.Selector(doc="The currently selected transform")
195
+
196
+ def __init__(
197
+ self,
198
+ transforms,
199
+ timeout=TIMEOUT,
200
+ paused=False,
201
+ **params,
202
+ ):
203
+ super().__init__(
204
+ video_stream=pn.widgets.VideoStream(
205
+ name="Video Stream",
206
+ timeout=timeout,
207
+ paused=paused,
208
+ height=0,
209
+ width=0,
210
+ visible=False,
211
+ format="jpeg",
212
+ ),
213
+ **params,
214
+ )
215
+ self.image = pn.pane.JPG(
216
+ height=self.height, width=self.width, sizing_mode="fixed"
217
+ )
218
+ self._updating = False
219
+ transforms = [to_instance(transform) for transform in transforms]
220
+ self.param.transform.objects = transforms
221
+ self.transform = transforms[0]
222
+ self.timer = Timer(sizing_mode="stretch_width")
223
+ self.settings = self._create_settings()
224
+ self._panel = self._create_panel()
225
+
226
+ def _create_settings(self):
227
+ return pn.Column(
228
+ pn.Param(
229
+ self.video_stream,
230
+ parameters=["timeout", "paused"],
231
+ widgets={
232
+ "timeout": {
233
+ "widget_type": pn.widgets.IntSlider,
234
+ "start": 10,
235
+ "end": 2000,
236
+ "step": 10,
237
+ }
238
+ },
239
+ ),
240
+ self.timer,
241
+ pn.Param(self, parameters=["height", "width"], name="Image"),
242
+ pn.Param(
243
+ self,
244
+ parameters=["transform"],
245
+ expand_button=False,
246
+ expand=False,
247
+ widgets={
248
+ "transform": {
249
+ "widget_type": pn.widgets.RadioButtonGroup,
250
+ "orientation": "vertical",
251
+ "button_type": "success",
252
+ }
253
+ },
254
+ name="Transform",
255
+ ),
256
+ self._get_transform,
257
+ )
258
+
259
+ def _create_panel(self):
260
+ return pn.Row(
261
+ self.video_stream,
262
+ pn.layout.HSpacer(),
263
+ self.image,
264
+ pn.layout.HSpacer(),
265
+ sizing_mode="stretch_width",
266
+ align="center",
267
+ )
268
+
269
+ @pn.depends("height", "width", watch=True)
270
+ def _update_height_width(self):
271
+ self.image.height = self.height
272
+ self.image.width = self.width
273
+
274
+ @pn.depends("transform")
275
+ def _get_transform(self):
276
+ # Hack: returning self.transform stops working after browsing the transforms for a while
277
+ return self.transform.view
278
+
279
+ def __panel__(self):
280
+ return self._panel
281
+
282
+ @pn.depends("video_stream.value", watch=True)
283
+ def _handle_stream(self):
284
+ if self._updating:
285
+ return
286
+
287
+ self._updating = True
288
+ if self.transform and self.video_stream.value:
289
+ value = self.video_stream.value
290
+ try:
291
+ image = self.timer.time_it(
292
+ name="Transform",
293
+ func=self.transform.run,
294
+ image=value,
295
+ height=self.height,
296
+ width=self.width,
297
+ )
298
+ self.image.object = image
299
+ except PIL.UnidentifiedImageError:
300
+ print("unidentified image")
301
+
302
+ self.timer.inc_it("last update")
303
+ self._updating = False