analytics-jiten's picture
Update app.py
96e2baf
raw
history blame
3.08 kB
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import warnings
import gradio as gr
import sklearn
warnings.filterwarnings('ignore')
data = pd.read_csv("Placement_Data_Full_Class.csv")
X = data.drop(["sl_no","status","salary"],axis=1)
y = data["status"]
X = pd.get_dummies(X,drop_first=True)
y = pd.get_dummies(y,drop_first=True)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X = scaler.fit_transform(X)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train,y_train)
def prediction(name,gender,ssc_p,ssc_b,hsc_p,hsc_b,hsc_s,degree_p,degree_t,workex,etest_p,specialisation,mba_p):
df = pd.DataFrame({"gender":gender,
"ssc_p":float(ssc_p),"ssc_b":ssc_b,"hsc_p":int(hsc_p),"hsc_b":hsc_b,"hsc_s":hsc_s,
"degree_p":float(degree_p),
"degree_t":degree_t,"workex":workex,"etest_p":float(etest_p),"specialisation":specialisation,
"mba_p":float(mba_p)
},index=[0])
data = pd.read_csv("Placement_Data_Full_Class.csv")
data = data.drop(["sl_no","status","salary"],axis=1)
data = data.append(df,ignore_index = True)
data = pd.get_dummies(data,drop_first = True)
data = scaler.fit_transform(data)
var = model.predict(data[[-1]])
if var == 1:
return "Congratulations! "+name+", you have a high chance of getting placed."
else:
return "Sorry! "+name+", better luck next time."
interface = gr.Interface(prediction,inputs=[
gr.Textbox(lines=2, placeholder="Enter your Name Here...", show_label = False),
gr.Dropdown(choices=["M","F"],value = "M",label = "Select your Gender"),
gr.Textbox(lines=2, placeholder="Enter your SSC Percentage Here...", show_label = False),
gr.Dropdown(choices=["Central","Others"],value = "Central",label = "Select your SSC Board"),
gr.Textbox(lines=2, placeholder="Enter your HSC Percentage Here...",show_label = False),
gr.Dropdown(choices=["Central","Others"],value = "Others",label = "Select your HSC Board"),
gr.Dropdown(choices=["Commerce","Science","Arts"],value = "Commerce",label = "Select your HSC Stream"),
gr.Textbox(lines=2, placeholder="Enter your Degree Percentage Here...",show_label = False),
gr.Dropdown(choices=["Comm&Mgmt","Sci&Tech","Others"],value = "Comm&Mgmt",label = "Select your Degree Domain"),
gr.Dropdown(choices=["No","Yes"],value = "No",label = "Select Whether you have prior Work Experience"),
gr.Textbox(lines=2, placeholder="Enter your E Test Percentage Here...",show_label = False),
gr.Dropdown(choices=["Mkt&Fin","Mkt&HR"],value = "Mkt&Fin",label = "Select your Specialisation"),
gr.Textbox(lines=2, placeholder="Enter your MBA Percentage Here...",show_label = False)
],outputs = gr.Label(value = "Prediction"),description = "Predicting Placement Chances")
interface.launch()