import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') data = pd.read_csv("Placement_Data_Full_Class.csv") X = data.drop(["sl_no","status","salary"],axis=1) y = data["status"] X = pd.get_dummies(X,drop_first=True) y = pd.get_dummies(y,drop_first=True) from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() X = scaler.fit_transform(X) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1) from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train,y_train) def prediction(name,gender,ssc_p,ssc_b,hsc_p,hsc_b,hsc_s,degree_p,degree_t,workex,etest_p,specialisation,mba_p): df = pd.DataFrame({"gender":gender, "ssc_p":float(ssc_p),"ssc_b":ssc_b,"hsc_p":int(hsc_p),"hsc_b":hsc_b,"hsc_s":hsc_s, "degree_p":float(degree_p), "degree_t":degree_t,"workex":workex,"etest_p":float(etest_p),"specialisation":specialisation, "mba_p":float(mba_p) },index=[0]) data = pd.read_csv("Placement_Data_Full_Class.csv") data = data.drop(["sl_no","status","salary"],axis=1) data = data.append(df,ignore_index = True) data = pd.get_dummies(data,drop_first = True) data = scaler.fit_transform(data) var = model.predict(data[[-1]]) if var == 1: return "Congratulations! "+name+", you have a high chance of getting placed." else: return "Sorry! "+name+", better luck next time." import gradio as gr interface = gr.Interface(prediction,inputs=[ gr.Textbox(lines=2, placeholder="Enter your Name Here...", show_label = False), gr.Dropdown(choices=["M","F"],value = "M",label = "Select your Gender"), gr.Textbox(lines=2, placeholder="Enter your SSC Percentage Here...", show_label = False), gr.Dropdown(choices=["Central","Others"],value = "Central",label = "Select your SSC Board"), gr.Textbox(lines=2, placeholder="Enter your HSC Percentage Here...",show_label = False), gr.Dropdown(choices=["Central","Others"],value = "Others",label = "Select your HSC Board"), gr.Dropdown(choices=["Commerce","Science","Arts"],value = "Commerce",label = "Select your HSC Stream"), gr.Textbox(lines=2, placeholder="Enter your Degree Percentage Here...",show_label = False), gr.Dropdown(choices=["Comm&Mgmt","Sci&Tech","Others"],value = "Comm&Mgmt",label = "Select your Degree Domain"), gr.Dropdown(choices=["No","Yes"],value = "No",label = "Select Whether you have prior Work Experience"), gr.Textbox(lines=2, placeholder="Enter your E Test Percentage Here...",show_label = False), gr.Dropdown(choices=["Mkt&Fin","Mkt&HR"],value = "Mkt&Fin",label = "Select your Specialisation"), gr.Textbox(lines=2, placeholder="Enter your MBA Percentage Here...",show_label = False) ],outputs = gr.Label(value = "Prediction"),description = "Predicting Placement Chances") interface.launch()