Neural_Network / app.py
anamikau's picture
Rename tasks.py to app.py
2d5ea75
import pandas as pd
import streamlit as st
import numpy as np
import tensorflow as tf
from PIL import Image
import pickle
st.header('Neural Networks Demo')
task = st.selectbox('Select Task', ["Select One",'Sentiment Classification', 'Tumor Detection'])
if task == "Tumor Detection":
def cnn(img, model):
img = Image.open(img)
img = img.resize((128, 128))
img = np.array(img)
input_img = np.expand_dims(img, axis=0)
res = model.predict(input_img)
if res:
return "Tumor Detected"
else:
return "No Tumor"
cnn_model = tf.keras.models.load_model("tumor_detection_model.h5")
uploaded_file = st.file_uploader("Choose a file", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
if st.button("Submit"):
result=cnn(uploaded_file, cnn_model)
st.write(result)
elif task == "Sentiment Classification":
types = ["Perceptron","BackPropagation", "RNN","DNN", "LSTM"]
input_text2 = st.radio("Select", types, horizontal=True)
if input_text2 == "Perceptron":
with open("ppn_model.pkl",'rb') as file:
perceptron = pickle.load(file)
with open("ppn_tokeniser.pkl",'rb') as file:
ppn_tokeniser = pickle.load(file)
def ppn_make_predictions(inp, model):
encoded_inp = ppn_tokeniser.texts_to_sequences([inp])
padded_inp = tf.keras.preprocessing.sequence.pad_sequences(encoded_inp, maxlen=500)
res = model.predict(padded_inp)
if res:
return "Negative"
else:
return "Positive"
st.subheader('Movie Review Classification using Perceptron')
inp = st.text_area('Enter message')
if st.button('Check'):
pred = ppn_make_predictions([inp], perceptron)
st.write(pred)
if input_text2 == "BackPropagation":
with open("bp_model.pkl",'rb') as file:
backprop = pickle.load(file)
with open("bp_tokeniser.pkl",'rb') as file:
bp_tokeniser = pickle.load(file)
def bp_make_predictions(inp, model):
encoded_inp = bp_tokeniser.texts_to_sequences([inp])
padded_inp = tf.keras.preprocessing.sequence.pad_sequences(encoded_inp, maxlen=500)
res = model.predict(padded_inp)
if res:
return "Negative"
else:
return "Positive"
st.subheader('Movie Review Classification using BackPropagation')
inp = st.text_area('Enter message')
if st.button('Check'):
pred = bp_make_predictions([inp], backprop)
st.write(pred)
elif input_text2 == "RNN":
rnn_model=tf.keras.models.load_model("spam_model.h5")
with open("spam_tokeniser.pkl", 'rb') as model_file:
rnn_tokeniser=pickle.load(model_file)
def rnn_make_predictions(inp, model):
encoded_inp = rnn_tokeniser.texts_to_sequences(inp)
padded_inp = tf.keras.preprocessing.sequence.pad_sequences(encoded_inp, maxlen=10, padding='post')
res = (model.predict(padded_inp) > 0.5).astype("int32")
if res:
return "Spam"
else:
return "Ham"
st.subheader('Spam message Classification using RNN')
input = st.text_area("Give message")
if st.button('Check'):
pred = rnn_make_predictions([input], rnn_model)
st.write(pred)
elif input_text2 == "DNN":
dnn_model=tf.keras.models.load_model("dnn_model.h5")
with open("dnn_tokeniser.pkl",'rb') as file:
dnn_tokeniser = pickle.load(file)
def dnn_make_predictions(inp, model):
inp = dnn_tokeniser.texts_to_sequences(inp)
inp = tf.keras.preprocessing.sequence.pad_sequences(inp, maxlen=500)
res = (model.predict(inp) > 0.5).astype("int32")
if res:
return "Negative"
else:
return "Positive"
st.subheader('Movie Review Classification using DNN')
inp = st.text_area('Enter message')
if st.button('Check'):
pred = dnn_make_predictions([inp], dnn_model)
st.write(pred)
elif input_text2 == "LSTM":
lstm_model=tf.keras.models.load_model("lstm_model.h5")
with open("lstm_tokeniser.pkl",'rb') as file:
lstm_tokeniser = pickle.load(file)
def lstm_make_predictions(inp, model):
inp = lstm_tokeniser.texts_to_sequences(inp)
inp = tf.keras.preprocessing.sequence.pad_sequences(inp, maxlen=500)
res = (model.predict(inp) > 0.5).astype("int32")
if res:
return "Negative"
else:
return "Positive"
st.subheader('Movie Review Classification using LSTM')
inp = st.text_area('Enter message')
if st.button('Check'):
pred = lstm_make_predictions([inp], lstm_model)
st.write(pred)