import pandas as pd from sklearn.model_selection import train_test_split import tensorflow as tf from keras.models import load_model from tensorflow.keras.models import save_model from tensorflow.keras.preprocessing.text import Tokenizer import pickle dataset = pd.read_csv(r"SMSSpamCollection.txt",sep='\t',names=['label','message']) dataset['label'] = dataset['label'].map( {'spam': 1, 'ham': 0} ) X = dataset['message'].values y = dataset['label'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) tokeniser = tf.keras.preprocessing.text.Tokenizer() tokeniser.fit_on_texts(X_train) encoded_train = tokeniser.texts_to_sequences(X_train) encoded_test = tokeniser.texts_to_sequences(X_test) max_length = 10 padded_train = tf.keras.preprocessing.sequence.pad_sequences(encoded_train, maxlen=max_length, padding='post') padded_test = tf.keras.preprocessing.sequence.pad_sequences(encoded_test, maxlen=max_length, padding='post') vocab_size = len(tokeniser.word_index)+1 # define the model model=tf.keras.models.Sequential([ tf.keras.layers.Embedding(input_dim=vocab_size,output_dim= 24, input_length=max_length), tf.keras.layers.SimpleRNN(24, return_sequences=False), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) # compile the model model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # summarize the model early_stop = tf.keras.callbacks.EarlyStopping(monitor='accuracy', mode='min', patience=10) # fit the model model.fit(x=padded_train, y=y_train, epochs=50, validation_data=(padded_test, y_test), callbacks=[early_stop] ) preds = (model.predict(padded_test) > 0.5).astype("int32") model_filename = "spam_model.h5" model.save(model_filename) # Save the tokenizer using pickle tokeniser_filename = "spam_tokeniser.pkl" with open(tokeniser_filename, 'wb') as tokeniser_file: pickle.dump(tokeniser, tokeniser_file)