File size: 8,197 Bytes
c5a6a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import sys
import time
from pathlib import Path
from typing import Any, Literal, Optional

import lightning as L
import torch
from lightning.fabric.plugins import BitsandbytesPrecision
from lightning.fabric.strategies import FSDPStrategy

from tsai_gpt.model import GPT, Block, Config
from tsai_gpt.tokenizer import Tokenizer
from tsai_gpt.utils import (get_default_supported_precision, gptq_quantization,
                            load_checkpoint)

L.seed_everything(1234)


def multinomial_num_samples_1(probs: torch.Tensor) -> torch.Tensor:
    if torch._dynamo.is_compiling():
        # Faster alternative to `torch.multinomial(probs, num_samples=1)` that is also CUDAGraph friendly
        distribution = torch.empty_like(probs).exponential_(1)
        return torch.argmax(probs / distribution, dim=-1, keepdim=True)
    return torch.multinomial(probs, num_samples=1)


def sample(
    logits: torch.Tensor, temperature: float = 1.0, top_k: Optional[int] = None
) -> torch.Tensor:
    logits = logits[0, -1]
    # optionally crop the logits to only the top k options
    if top_k is not None:
        v, i = torch.topk(logits, min(top_k, logits.size(-1)))
        # do not use `torch.where` as in nanogpt because it will repeat top-k collisions
        logits = torch.full_like(logits, float("-inf")).scatter_(-1, i, v)
    # optionally scale the logits and sample from a probability distribution
    if temperature > 0.0:
        probs = torch.nn.functional.softmax(logits / temperature, dim=-1)
        return multinomial_num_samples_1(probs)
    return torch.argmax(logits, dim=-1, keepdim=True)


def next_token(
    model: GPT, input_pos: torch.Tensor, x: torch.Tensor, **kwargs: Any
) -> torch.Tensor:
    logits = model(x, input_pos)
    next = sample(logits, **kwargs)
    return next.type_as(x)


@torch.inference_mode()
def generate(
    model: GPT,
    prompt: torch.Tensor,
    max_returned_tokens: int,
    *,
    temperature: float = 1.0,
    top_k: Optional[int] = None,
    eos_id: Optional[int] = None,
) -> torch.Tensor:
    """Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.

    The implementation of this function is modified from A. Karpathy's nanoGPT.

    Args:
        model: The model to use.
        prompt: Tensor of shape (T) with indices of the prompt sequence.
        max_returned_tokens: The maximum number of tokens to return (given plus generated).
        temperature: Scales the predicted logits by 1 / temperature.
        top_k: If specified, only sample among the tokens with the k highest probabilities.
        eos_id: If specified, stop generating any more token once the <eos> token is triggered.
    """
    T = prompt.size(0)
    assert max_returned_tokens > T
    if model.max_seq_length < max_returned_tokens - 1:
        # rolling the kv cache based on the `input_pos` value would be necessary. However, doing so would introduce a
        # data dependency on the `input_pos` tensor and impact model compilation. Since this setting is uncommon, we do
        # not support it to avoid negatively impacting the overall speed
        raise NotImplementedError(
            f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}"
        )

    device = prompt.device
    tokens = [prompt]
    input_pos = torch.tensor([T], device=device)
    token = next_token(
        model,
        torch.arange(0, T, device=device),
        prompt.view(1, -1),
        temperature=temperature,
        top_k=top_k,
    ).clone()
    tokens.append(token)
    for _ in range(2, max_returned_tokens - T + 1):
        token = next_token(
            model, input_pos, token.view(1, -1), temperature=temperature, top_k=top_k
        ).clone()
        tokens.append(token)
        if token == eos_id:
            break
        input_pos = input_pos.add_(1)
    return torch.cat(tokens)


"""
quantize (Optional[Literal[&quot;bnb.nf4&quot;, &quot;bnb.nf4, optional): quantization method to use. Defaults to None.
    - "bnb.nf4", "bnb.nf4-dq", "bnb.fp4", "bnb.fp4-dq": 4-bit quantization bitsandbytes
    - "bnb.int8": 8-bit quantization bitsandbytes
    - "gptq.int4": 4-bit quantization GPTQ
    for more details see: https://github.com/facebookresearch/bitsandbytes, https://github.com/Lightning-AI/lit-gpt/blob/main/tutorials/quantize.md
strategy (str, optional): Fabric strategy setting. Defaults to "auto".
devices (int, optional): number of devices to be used. Defaults to 1.
precision (Optional[str], optional): fabic precision settings. Defaults to None.
"""

chptk_path: str = "saved_model/last-iter-015000-ckpt.pth"
tokenizer_path: str = "tokenizer_Llama-2-7b-chat-hf"
quantize: Optional[
    Literal["bnb.nf4", "bnb.nf4-dq", "bnb.fp4", "bnb.fp4-dq", "bnb.int8", "gptq.int4"]
] = None
strategy: str = "auto"
devices: int = 1
precision: Optional[str] = None

precision = precision or get_default_supported_precision(training=False)
plugins = None
if quantize is not None:
    if devices > 1:
        raise NotImplemented("Multi-GPU quantization is not supported yet.")
    if quantize.startswith("bnb."):
        if "mixed" in precision:
            raise ValueError("Quantization and mixed precision is not supported.")
        dtype = {"16-true": torch.float16, "bf16-true": torch.bfloat16, "32-true": torch.float32}[
            precision
        ]
        plugins = BitsandbytesPrecision(quantize[4:], dtype)
        precision = None

if strategy == "fsdp":
    strategy = FSDPStrategy(auto_wrap_policy={Block}, cpu_offload=False)

fabric = L.Fabric(devices=devices, strategy=strategy, precision=precision, plugins=plugins)
fabric.launch()

tokenizer = Tokenizer(Path("tokenizer_Llama-2-7b-chat-hf"))
config = Config.from_name("pythia-160m")

fabric.print(f"Loading model from {chptk_path}", file=sys.stderr)
t0 = time.perf_counter()
with fabric.init_module(empty_init=True), gptq_quantization(quantize == "gptq.int4"):
    model = GPT(config)
fabric.print(
    f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr
)
with fabric.init_tensor():
    # enable the kv cache
    model.set_kv_cache(batch_size=1)

model.eval()
model = fabric.setup_module(model)

t0 = time.perf_counter()
load_checkpoint(fabric, model, chptk_path)
fabric.print(
    f"Time to load the model weights: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr
)


def generate_from_prompt(
    prompt: str = "",
    max_new_tokens: int = 500,
    top_k: int = 200,
    temperature: float = 0.8,
):
    """Generate text from a prompt using pre-trained model

    Args:
        prompt (str, optional): Prompt string to be used for generating samples. Defaults to "".
        num_samples (int, optional): Number of samples to be generated. Defaults to 1.
        max_new_tokens (int, optional): number of generation steps to take. Defaults to 500.
        top_k (int, optional): top most preferable tokens to consider in the sampling process. Defaults to 200.
        temperature (float, optional): Control randomness for sampelling process. Defaults to 0.8.
    """
    encoded = tokenizer.encode(prompt, device=fabric.device)
    prompt_length = encoded.size(0)
    max_returned_tokens = prompt_length + max_new_tokens
    with fabric.init_tensor():
        # set the max_seq_length to limit the memory usage to what we need
        model.max_seq_length = max_returned_tokens

    num_samples: int = 1
    for i in range(num_samples):
        t0 = time.perf_counter()
        y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k)
        t = time.perf_counter() - t0
        # for block in model.transformer.h:
        #     block.attn.kv_cache.reset_parameters()
        pred = tokenizer.decode(y)
        fabric.print(pred)
        tokens_generated = y.size(0) - prompt_length
        fabric.print(
            f"Time for inference {i + 1}: {t:.02f} sec total, {tokens_generated / t:.02f} tokens/sec",
            file=sys.stderr,
        )
    if fabric.device.type == "cuda":
        fabric.print(
            f"Memory used: {torch.cuda.max_memory_allocated() / 1e9:.02f} GB", file=sys.stderr
        )

    return pred