
MTNZ IFS Technical Architecture Description
0

MTNZ IFS
Technical
Architecture
Description
IFS Applications 10 Technical Documentation

Critical Infrastructure Resilience Company
5-2-2024

Table of Contents
1.0. IFS APPLICATION HIGH-LEVEL ARCHITECTURE..1

1.1. Components...1

1.2. Multi-tier...1

1.3. Deployment and platforms... 2

2.0. IFS APPLICATION ARCHITECTURE (LLD)...3

2.1. Core Server..3

2.2. IFS and Access Providers... 3

2.2.1. How it works...4

2.2.2. Access Provider Contents.. 5

2.3. Base Server...6

2.4. Middle-tier database connection pooling...6

2.4.1. Data Sources..7

2.4.2. PL/SQL Access.. 8

3.0. IFS Middleware Server...9

3.1. Overview...9

3.2. Concepts...9

Node Manager...9

Admin Server... 9

Managed Server..9

Host...10

Machine..10

HTTP Server..10

Cluster.. 10

3.5. Load Balancing..12

3.6. The Node Manager's Role...13

3.7. The Admin Server's Role...13

MTNZ IFS Technical Architecture Description
1

MTNZ IFS Technical Architecture Description
2

I. ABOUT DOCUMENT

This document as been compiled on behalf of MTN Zambia by Critical
infrastructure company (CIRC) for information purposes only.

In putting together this technical documentation heavy reliance has been placed
on the readily available online IFS Applications 10 Technical documentation (see
reference link below).

References:

1. https://docs.ifs.com/techdocs/

II. DOCUMENT CONTROL

Ver Documentary activity Performed by Date
1.0 Document created Bassey Ademoyega 02/03/2024
1.0 Document reviewed Bayo Adogbola 02/05/2024
1.0 Approved for distribution Emmanuel

Williams
03/05/2024

MTNZ IFS Technical Architecture Description
0

https://docs.ifs.com/techdocs/

1.0. IFS APPLICATION HIGH-LEVEL ARCHITECTURE
1.1. Components

Component in IFS Applications is used to group entities, processes and client pages

into installable units for a logical area of development.

Component enables for independent, parallel development activities as well as selective

deployment of IFS Applications. A Component may be dependent on and require other

Components to be present. The interfaces between them must be well defined, stable

(not likely to change frequently), and limited in number. Components may be separately

installed or upgraded at a customer site as long as the interfaces to other components

are kept backwards compatible.

A key concept is that of 'Public' interfaces. A public method in one Component allows

other Components to interact with that method. Much of the implementation details will

be 'hidden' from other Components. This follows the Object-Oriented concept of

encapsulation. This allows maximum flexibility in deciding how the internal details will be

implemented. However, the public methods must be kept stable since others are now

dependent on those interfaces. The general philosophy is to keep 'Public' definitions to a

minimum, providing only those methods actually needed by others.

Many Components will detect the presence of other Components dynamically at run

time and use functionality in the other Component if it is installed. Some basic support

Components are required for IFS Applications, Components such as Enterprise,

Accounting Rules, and Application Services.

A Component is the basic unit handled by IFS Deployment (Installation) tools.

1.2. Multi-tier
IFS Applications Architecture is a multi-tier architecture and is designed using three

main tiers with different purposes

 Client tier - Page interaction patterns, UI Shell, Look and feel

 Middle tier - API access, Authorisation, Business logic

MTNZ IFS Technical Architecture Description
1

 Database tier - Business logic and data storage

Communication between tiers are done using standard protocols such as HTTPS and

JDBC.

Each tier has their own software objects representing data and functions. These

software objects are all derived from a common model and designed in IFS

development tools.

IFS Applications Architecture is divided in to three main tiers, with the business logic

available through access providers to IFS user interfaces and custom interfaces.

The UI tier provides interaction with human users and client-side applications and

devices. Clients can exists in many different scenarios, traditional desktop and web,

mobile apps, add-ins to Office or other productivity software. Regardless which client

technology, the same business logic is used.

The business logic tier is the heart of the application. It implements business knowledge,

functionality, and processes. This tier is divided into two sub tiers. The core business

logic sub tier is a high-performance, object-oriented implementation of business-object

level and activity-level business logic. Above core business logic, an service access tier

defines the business logic access, the API. This API then used for integrations, client

access, and process level logic.

The fully normalized data storage tier is based on the relational database model. The

database server is configured so that no table data can be accessed directly. All data

modifications are done through the business logic, this guarantees data integrity and

prevents "back-door" modification.

1.3.Deployment and platforms
IFS Applications is built using standard tools and technologies. IFS supports Microsoft

Windows Server and Linux® as server platforms. Because each physical tier in the

architecture is separated through standard protocols, it is possible to "mix and match"

platforms in a deployment. IFS Applications can be deployed on anything from a single

MTNZ IFS Technical Architecture Description
2

laptop running all components for demo purposes, to multi-server clustered high-

availability installations - supporting tens of thousands of concurrent users.

The implementation at MTN Zambia is currently on Windows for the application server and Unix for the

Database

The database runs both the storage tier and the application core business logic objects.

The application server called IFS Middleware Server runs the services layer business

logic objects and integration services. Both the database and the application server can

be run in clustered configurations for extreme reliability and scalability.

Clients access the business logic using the https protocol. This allows easy passage

through firewalls, proxies, and other network infrastructure. Ports can be configured.

Integrations and customer interfaces access the business logic through the same

access providers as used by IFS Applications clients, and thus use the same protocols.

2.0. IFS APPLICATION ARCHITECTURE (LLD)
2.1. Core Server

IFS Service-Oriented Component Architecture is a layered, multi-tier architecture. Core

Server includes the core runtime and development frameworks and libraries for IFS

business logic.

Base Server contains the framework for for Oracle PL/SQL-based business logic and

storage. Middle Tier contains the framework for services layer sub tier of the business

logic tier. Access providers are small client-side high-level programming libraries that

contain all the functionality and APIs needed for easy access to the business logic.

2.2. IFS and Access Providers
IFS has chosen to package the access APIs into separately installable access providers

so that any application, whether it uses an IFS client framework or not, can have full

access to business logic. Although all access providers provide the same functionality

the implementation is different for each targeted platform (Java, .NET). The reason for

this is to make them as natural as possible to use. For example the Java access

provider is written in 100% Java. Similarly native mechanisms for exception handling,

MTNZ IFS Technical Architecture Description
3

object collections etc. are used. If an error occurs in the business logic the Java access

provider will throw a Java exception to the application. All of this makes it very easy for a

developer to build an application (with or without UI) that uses the application business

logic using any of the supported development environments. The developer is only

working with objects and technologies that are native to the development environment

he knows and understands.

Because all the functionality and APIs required to use the business logic have been

separated into access providers, both IFS client applications and other applications can

enjoy the same easy way to access the business logic.

2.2.1. How it works
Access providers use a simple request-response metaphor for invoking business logic.

The basic principle works like this:

1. The client program creates the request document. This can be either an
XML document or a document built using the BOM, ROM or VOM object
models (see below)

2. The client program Invokes an Activity or Business API in the business
logic, passing the request document along.

3. The access provider handles all required communication with the
servers, where the request is processed and a response document is
created. The response document will be of the same format as the
request document. For example if an XML request document was
passed, then the response will also be an XML document.

MTNZ IFS Technical Architecture Description
4

4. The client application reads the response document and continues
execution.

Important to know is that the transaction control happens in it's entirely on the server.

Each invocation becomes it's own transaction.

2.2.2. Access Provider Contents
As much as the technical implementation differ between the access providers, they all

have a common set of functionality which they provide to the applications. Each access

provider includes the following:

 XML parser
The XML parser is not developed by IFS, but it is an important part of an access
provider. The XML parser is used to create XML documents to be passed to a server
request. Each access provider uses the standard XML parser for the target platform.

 Buffer Object Model (BOM)
The buffer object model is a low-level object model to construct request and response
documents. It serializes to a binary format rather than a text format like the XML
documents. Because of the binary format used, the BOM gives significantly better
parsing times and smaller documents than is possible with XML.

 Record Object Model (ROM)
This is a high level record object model. The basic constructs are records (representing
one data entity), record collections (a set of records, or many entities in one lump), and
attributes (the individual information attributes of a record). Depending on the target
platform the record object model may be built on top of existing data models and api:s
on that platform. The ROM uses the same binary serialization format as the BOM.

 View Object Model (VOM)
The view object model consists of real classes representing the various entities and
views used in the business logic. Access providers that support VOM contain
functionality to generate class representations of any entity or view in the business
logic. This means that the developer will get compile-time rather than run-time
checking of record types, attribute names etc. The generated VOM classes internally
use the ROM to construct the request and response documents.

 Server
The server object is the object that handles the communication with the business logic.
It encapsulates the underlying protocol and provides additional services (see below).
Client applications use the server object to invoke the business logic, passing a
request document along. Client can use request documents built using either of the
document object models XML, BOM, ROM, or VOM.

MTNZ IFS Technical Architecture Description
5

In addition to the core components listed above, the access providers also provide other

services useful to client applications. These services are:

 Data compression
Compression of the request/response documents sent and received.

 Server debug trace
All application servers optionally output a debug trace form the execution.
The access provider let's the client enable different categories of debug
trace in the server, and to retrieve the complete trace text after a call to
the server has been made.

 Statistics
Keeping track of statistics such as the amount of sent and received data,
time used for server invocations, and number of server invocations made.

From a developer’s point of view an access provider is basically a Software

Development Kit (SDK) which allows him/her to build an application which interacts with

the business logic. Not all component and services are implemented by all access

providers.

2.3. Base Server
Base Server includes the framework and APIs for IFS Applications business logic and

storage in the database tier. This business logic is based on database packages and

views, storage is based on tables and indexes.

The database tier is using an Oracle database to run business logic, store and retrieve

data in an acceptable time. IFS Developer Studio is the tool that is used to develop

business logic with the Base Server framework.

The Base Server framework has many central concepts and areas including:

 Security

 Events

 Connectivity

 Background Processing

 Monitoring

 Data Archiving

 Application Search

 Subscriptions

 Custom Objects

2.4. Middle-tier database connection pooling
The IFS middle-tier makes use of three separate pools of database connections. Such

connections are shared between multiple users. The three connection pools serves

different use cases and have very different behavior.

MTNZ IFS Technical Architecture Description
6

https://docs.ifs.com/techdocs/Foundation1/050_development/050_development_tools/002_developer_studio/default.htm
https://docs.ifs.com/techdocs/Foundation1/010_overview/220_user_interface/about_custom_objects/default.htm
https://docs.ifs.com/techdocs/Foundation1/010_overview/220_user_interface/about_streams/default.htm
https://docs.ifs.com/techdocs/Foundation1/010_overview/220_user_interface/application_search_concept/default.htm
https://docs.ifs.com/techdocs/Foundation1/010_overview/260_data_management/030_data-archiving/default.htm
https://docs.ifs.com/techdocs/Foundation1/010_overview/270_monitoring/default.htm
https://docs.ifs.com/techdocs/Foundation1/010_overview/230_background_processing/default.htm
https://docs.ifs.com/techdocs/Foundation1/010_overview/240_integration/210_connectivity/default.htm
https://docs.ifs.com/techdocs/Foundation1/010_overview/240_integration/220_events/default.htm
https://docs.ifs.com/techdocs/Foundation1/050_development/040_core_server/027_base_server_dev/050_security/default.htm

Overview of IFS Applications three separate pools of database connections

2.4.1. Data Sources
Two of the database connection pools are managed by the application server as Data

Sources:

 fndbas
This connection pool is used for middle-tier Activities and Services, such
as bizAPIs, web services, some IFS Enterprise Explorer framework
services, IFS Solution Manager, etc.
All connections are created as user IFSSYS, but when a connection is to
be used by a client call the current Foundation1 user identity is
temporarily switched with a call to Login_SYS.Init_Fnd_Session (the
Oracle database user is still IFSSYS). The connections are shared
between all interactive clients and service consumers.
When monitoring database sessions, connections from this pool are
identified as category Activity/Service.
The minimum and maximum size of the connection pool (number of
database connections) can be configured using the Installer. The size of
the connection pool will vary, depending on the current load, between
these configured sizes.

 fndbasXA
This connection pool is used only by the Application Server integration
with Oracle Advanced Queuing.
Both the Batch Processor and Streams use connections in this pool in

MTNZ IFS Technical Architecture Description
7

https://docs.ifs.com/techdocs/Foundation1/010_overview/220_user_interface/about_streams/default.htm
https://docs.ifs.com/techdocs/Foundation1/010_overview/230_background_processing/025_batchprocessor/default.htm
https://docs.ifs.com/techdocs/Foundation1/040_administration/270_monitoring/040_database_sessions/default.htm

order to subscribe to messages sent from the database to the application
server. Such connections are never used to invoke business logic and
are never used by interactive clients.
All connections are created as user IFSSYS.
When monitoring database sessions, connections from this pool are
identified as category JMS-AQ integration.

Both connection pools can be monitored using IFS System

Monitoring and configured using the Installer.

2.4.2. PL/SQL Access
This type of connection pool is used by interactive clients when accessing database

business logic directly. The behavior of this connection pool is very different from the

two application server managed connection pools. All connections are created as

user IFSSYS, but rather than temporarily switching only the Foundation1 user identity

when a connection is in use the Oracle database user is also switched using Oracle

proxy authentication. Connections are shared between clients, but the pool will attempt

to reuse an already switched connection (where the database user identity matches that

of the current user) as a way to minimize the cost and impact of database user

switching. If no such idle connection is available the database identity will be switched to

that of the current user.

There are two scenarios where connections are reserved for a particular client session -

when the client keeps an open cursor (this typically happens when scrolling in a table

window with a large result set) or when the client keeps a database transaction active

between client-server calls. In both these scenarios is absolutely vital that

the same database connection is used for all database calls.

The state of the connection indicates whether the connection is currently:

 USED - Ongoing database call

 INITIALIZED - User identity switched to some database user

 ANONYMOUS - Not yet initialized connection, will have to be initialized
before use

 RESERVED - The connection is dedicated to a particular client session,
either because of an open cursor or an active transaction. The
connection will go back to state INITIALIZED automatically after any of
the two configurable timeouts explained below.

(Other transient connection states exists.)

There are three important configuration parameters which can be changed using the

Installer:

 Maximum Number of Connections
The connection pool will grow up to this many connections as needed,
depending on the current load. Since connections can be shared, this
value can be significantly less than the number of concurrent users.

 Cursor Timeout
The time until an idle open cursor will be closed automatically.

 Transaction Wait Timeout
The time until an active transaction, waiting for subsequent client-server
call, will be rolled back automatically.
This is basically the maximum user "think" time between server calls in
the context of an ongoing transaction started by the client.

MTNZ IFS Technical Architecture Description
8

https://docs.ifs.com/techdocs/Foundation1/020_installation/020_installing_fresh_system/040_installing_ifs_applications/030_deploy_middle_tier/hidden_itd/120_connection_pool_configuration.htm
https://docs.ifs.com/techdocs/Foundation1/040_administration/270_monitoring/070_system_monitoring/default.htm
https://docs.ifs.com/techdocs/Foundation1/040_administration/270_monitoring/070_system_monitoring/default.htm
https://docs.ifs.com/techdocs/Foundation1/040_administration/270_monitoring/040_database_sessions/default.htm

The behavior of this pool can be monitored using IFS System

Monitoring and configured using the Installer.

When monitoring database sessions, connections from this pool are identified as

category PL/SQL Access.

 3.0. IFS Middleware Server
3.1. Overview

 The Application Server, which is used by IFS Applications, is distributed in IFS

component "IFS Middleware Server" and is based on Oracle WebLogic Enterprise

Edition. Since it is embedded into an IFS component all installation, administration and

configuration is performed using IFS supplied tools.

IFS Middleware Server introduces some new keywords and concepts that are important

to know in order to understand how the Application Server functions. This page will

describe central concepts as Node Manager, Admin Server and Managed Server. It also

describes how clustering works with and without an external load balancer and how

servers are controlled.

Configuration changes of parameters and cluster of the IFS Middleware Server is made

using IFS Admin Console after a fresh install is performed.

3.2. Concepts
An IFS Applications instance requires a number of resources such as data sources,

messaging queues and enterprise applications in order to be operational. The umbrella

under which these resources are managed is called a domain.

Node Manager

Node Manager is a utility that enables starting, shutting down and restarting Admin

Server, Managed Servers and HTTP Server on one node either from the host itself or

from another node. The Node Manager has low memory footprint and should always run

as a service.

Admin Server

The Admin Server is a server that controls the domain configuration. It hosts the IFS

Middleware Server Admin Console and IFS System Monitoring Console applications,

but no business functionality.

Managed Server

A Managed Server hosts one or more applications. There are two types of Managed

Servers - "Main" servers and "Integration" servers.

"Main" servers expose business functionality consumed by interactive clients such as

IFS Aurena and IFS Enterprise Explorer.

"Integration" servers implements and exposes functionality with an integration intent

(Web Services and IFS Connect). It also implements reporting functionality.

MTNZ IFS Technical Architecture Description
9

https://docs.ifs.com/techdocs/Foundation1/040_administration/270_monitoring/040_database_sessions/default.htm
https://docs.ifs.com/techdocs/Foundation1/020_installation/500_references/020_ifs_applications_installer/020_ui_reference_itd/035_ifs_home_itd/117_plsql_sess/default.htm
https://docs.ifs.com/techdocs/Foundation1/040_administration/270_monitoring/070_system_monitoring/default.htm
https://docs.ifs.com/techdocs/Foundation1/040_administration/270_monitoring/070_system_monitoring/default.htm

Host

Host is the term used for a physical- or virtual machine, i.e. a computer.

Machine

Machine is the term for the logical representation of a host within the domain.

HTTP Server

The HTTP Server is the entry-point of all applications. The HTTP Server is sometimes

referred to as Web Server.

Cluster

There are two types of clustering; vertical and horizontal. Vertical clustering means that

there are two or more servers running on the same machine and horizontal clustering

means there are two or more servers running on different machines. In IFS Middleware

Server it is possible to configure how many servers to run on any machine, thus giving

the option to run both a horizontal and a vertical cluster at the same time.

When forming the cluster, one of the hosts in the cluster will act as the master, which will

always be the host where you run the IFS Installer in order to apply patches and new

functionality. The master will run the Admin Server which is used as the center point for

the cluster. The Admin Server holds the master configuration and the other machine will

periodically check for any changes and update their local configuration accordingly.

Managed Servers can also be started, stopped and monitored using the Admin Server.

No other machines will run an Admin Server.

To add host machines to a cluster the script cluster.cmd is run on the Master node. It will

create a zip file with all neccesary configuration and software. The zip file is then copied

over to all hosts to be added. The zipfile is unzipped and the cluster.cmd is run on all

new hosts. The hosts will now register themselfs to the AdminServer. In the Admin

Console the new host will be available and new managed servers can be deployed into

the MainCluster and the IntCluster on any of the new hosts.

The number of managed servers each machine will host is configurable, it might not

contain any Managed Servers at all, a scenario which would only make sense in case

you wish to decrease the load of the master node. Each host will also contain everything

necessary to set up an HTTP Server. However, by default it will only run on the master

after installation. Additional HTTP Servers can be set up using the IFS Middleware

Server Admin Console, but this is really only required in case an external load balancer

is used.

3.3. Default configuration
The default configuration for IFS Middleware Server is built up using a single machine

hosting two managed servers as illustrated below. Note that there are two separate

clusters - MainCluster exposing services used by interactive clients

and IntCluster exposing integration services. It's this default configuration that is always

set up in a fresh install. To extend a default configuration with horizontal or vertical

cluster the Admin Console will be used.

MTNZ IFS Technical Architecture Description
10

Note: This is the current set-up for MTN Zambia IFS Applications 10.

3.4. Extended configuration
In the example configuration below an additional host has been added hosting two

additional managed servers. Note that the two clusters now stretches across two

machines. Also note that only the master host runs a HTTP Server, which in this

configuration becomes a single point of failure. A real highly available installation would

also use an external load balancer as shown in the second image below.

Horizontal cluster with a single HTTP Server.

MTNZ IFS Technical Architecture Description
11

Horizontal cluster with two HTTP Servers and an external load balancer.

3.5. Load Balancing
The load is always balanced between the application servers by the HTTP Server no

matter if there is an external load balancer in front or not. This typically eliminates the

need of having more than one HTTP Server running when there is no external load

balancer.

Load balancing example for one HTTP Server and five managed servers in a cluster.

While the HTTP Server distributes the load between the application servers, an external

load balancer can be used to distribute the load between HTTP Servers, thus increasing

the throughput for HTTP calls if this is needed. This means that although the external

load balancer forwards your request to Host B you might still end up communicating with

a managed server on Host A. The below image describes the load balancing where an

external load balancer is used and the HTTP Servers on all hosts are serving requests.

MTNZ IFS Technical Architecture Description
12

Load balancing example with an external load balancer, three HTTP Servers and five

managed servers.

3.6. The Node Manager's Role
The Node Manager is acting as an entry point on each machine. Therefore it is

important that it is up and running at all times. It also handles server crash recovery if

the system goes down or a running server crashes. This is why it is important that the

Node Manager is started automatically when the host starts, only then can it start up the

servers that terminated unexpectedly. It is also important that managed servers are

stopped correctly using the stop scripts if it needs to be stopped for any reason,

otherwise they will bounce right up again.

3.7. The Admin Server's Role
The Admin Server plays an important role in the cluster. As previously mentioned, it is

the center point of the entire cluster. It maintains the master configuration and

propagates any changes to the application servers; it is responsible for managing new

or updated applications and it also starts and stops the managed servers. Should the

Admin Server become unavailable, the applications servers will continue to run

independently but try to reconnect on a regular basis in order to receive configuration

changes.

When starting an application server, the Admin Server is contacted and asked to start

the specific server. The Admin Server then contacts the Node Manager on the machine

where the application server resides which in turn tells the managed server to start and

reports back to the Admin Server. The Admin Server can now communicate directly with

MTNZ IFS Technical Architecture Description
13

the application server and can tell it to stop.

Example of starting or stopping a managed server.

More information about how to control the cluster can be found here.

MTNZ IFS Technical Architecture Description
14

https://docs.ifs.com/techdocs/Foundation1/040_administration/400_core_server/010_middle_tier/010_middleware_server/005_reconfiguration_and_administration/020_administration_scripts/default.htm

	1.0. IFS APPLICATION HIGH-LEVEL ARCHITECTURE
	1.1. Components
	1.2. Multi-tier
	1.3. Deployment and platforms
	2.0. IFS APPLICATION ARCHITECTURE (LLD)
	2.1. Core Server
	2.2. IFS and Access Providers
	2.2.1. How it works
	2.2.2. Access Provider Contents

	2.3. Base Server
	2.4. Middle-tier database connection pooling
	2.4.1. Data Sources
	2.4.2. PL/SQL Access

	3.0. IFS Middleware Server
	3.1. Overview
	3.2. Concepts
	Node Manager
	Admin Server
	Managed Server
	Host
	Machine
	HTTP Server
	Cluster

	3.5. Load Balancing
	3.6. The Node Manager's Role
	3.7. The Admin Server's Role

