Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
|
5 |
+
client = InferenceClient(
|
6 |
+
"mistralai/Mistral-7B-Instruct-v0.1"
|
7 |
+
)
|
8 |
+
|
9 |
+
rag_text = "Este es el texto RAG"
|
10 |
+
prompt_template_text = "Este es el texto del template de prompt"
|
11 |
+
|
12 |
+
def format_prompt(message):
|
13 |
+
prompt = "<s>"
|
14 |
+
prompt += f"[INST] {message} [/INST]"
|
15 |
+
return prompt
|
16 |
+
|
17 |
+
def generate(prompt):
|
18 |
+
|
19 |
+
generate_kwargs = dict(
|
20 |
+
temperature=0.9,
|
21 |
+
max_new_tokens=1024,
|
22 |
+
top_p=0.95,
|
23 |
+
repetition_penalty=1.0,
|
24 |
+
do_sample=True,
|
25 |
+
seed=42,
|
26 |
+
)
|
27 |
+
|
28 |
+
formatted_prompt = format_prompt(prompt)
|
29 |
+
|
30 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
31 |
+
output = ""
|
32 |
+
|
33 |
+
for response in stream:
|
34 |
+
output += response.token.text
|
35 |
+
yield output
|
36 |
+
return output
|
37 |
+
|
38 |
+
|
39 |
+
def process_input(text, rag, prompt_template):
|
40 |
+
prompt = text
|
41 |
+
if rag:
|
42 |
+
prompt += rag_text
|
43 |
+
if prompt_template:
|
44 |
+
prompt += prompt_template_text
|
45 |
+
json_text = generate(prompt)
|
46 |
+
|
47 |
+
# Convertimos el generador en una cadena JSON
|
48 |
+
json_str = ''.join(json_text)
|
49 |
+
|
50 |
+
# Convertimos la cadena JSON en un objeto JSON
|
51 |
+
json_obj = json.loads(json_str)
|
52 |
+
|
53 |
+
# Generamos el archivo JSON
|
54 |
+
with open('output.json', 'w') as f:
|
55 |
+
json.dump(json_obj, f)
|
56 |
+
|
57 |
+
return text
|
58 |
+
|
59 |
+
def create_interface():
|
60 |
+
# Definimos los componentes de la interfaz
|
61 |
+
input_text = gr.Textbox(label="Input")
|
62 |
+
rag_checkbox = gr.Checkbox(label="RAG")
|
63 |
+
prompt_template = gr.Checkbox(label="PromptTemplate")
|
64 |
+
output_text = gr.Textbox(label="Output")
|
65 |
+
classification_types_checkboxes = gr.CheckboxGroup(label="Clasificacion Tipo")
|
66 |
+
|
67 |
+
# Definimos la función que se ejecutará cuando se envíe la entrada
|
68 |
+
def fn(text, rag, prompt_template):
|
69 |
+
output = process_input(text, rag, prompt_template)
|
70 |
+
with open('output.json', 'r') as f:
|
71 |
+
data = json.load(f)
|
72 |
+
classification_types = [item['clasificacion_tipo'] for item in data]
|
73 |
+
classification_types_options = [(option, option) for option in classification_types]
|
74 |
+
classification_types_checkboxes = gr.CheckboxGroup(label="Clasificacion Tipo", choices=classification_types_options, interactive = True)
|
75 |
+
return output, classification_types_checkboxes
|
76 |
+
|
77 |
+
# Creamos la interfaz
|
78 |
+
iface = gr.Interface(
|
79 |
+
fn=fn,
|
80 |
+
inputs=[input_text, rag_checkbox, prompt_template],
|
81 |
+
outputs=[output_text, classification_types_checkboxes]
|
82 |
+
)
|
83 |
+
|
84 |
+
return iface
|
85 |
+
|
86 |
+
iface = create_interface()
|
87 |
+
iface.launch()
|