import gradio as gr import json from huggingface_hub import InferenceClient client = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.1" ) rag_text = "Este es el texto RAG" prompt_template_text = "Este es el texto del template de prompt" def format_prompt(message): prompt = "" prompt += f"[INST] {message} [/INST]" return prompt def generate(prompt): generate_kwargs = dict( temperature=0.9, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt) output = client.text_generation(formatted_prompt, **generate_kwargs) return output def process_input(text, rag, prompt_template): prompt = text if rag: prompt += rag_text if prompt_template: prompt += prompt_template_text text = generate(prompt) # Convertimos el generador en una cadena JSON #json_str = ''.join(json_text) # Convertimos la cadena JSON en un objeto JSON #json_obj = json.loads(json_str) # Generamos el archivo JSON #with open('output.json', 'w') as f: # json.dump(json_obj, f) return text def create_interface(): # Definimos los componentes de la interfaz input_text = gr.Textbox(label="Input") rag_checkbox = gr.Checkbox(label="RAG") prompt_template = gr.Checkbox(label="PromptTemplate") output_text = gr.Textbox(label="Output") classification_types_checkboxes = gr.CheckboxGroup(label="Clasificacion Tipo") # Definimos la función que se ejecutará cuando se envíe la entrada def fn(text, rag, prompt_template): output = process_input(text, rag, prompt_template) with open('output.json', 'r') as f: data = json.load(f) classification_types = [item['clasificacion_tipo'] for item in data] classification_types_options = [(option, option) for option in classification_types] classification_types_checkboxes = gr.CheckboxGroup(label="Clasificacion Tipo", choices=classification_types_options, interactive = True) return output, classification_types_checkboxes examples = [ ["Ejemplo de texto", True, False], ["Otro ejemplo", False, True] ] # Creamos la interfaz iface = gr.Interface( fn=fn, inputs=[input_text, rag_checkbox, prompt_template], outputs=[output_text, classification_types_checkboxes], examples=examples ) return iface iface = create_interface() iface.launch()