File size: 7,049 Bytes
521091c 4a37dab 41d06ba eb02780 d531709 c4d6bf6 d531709 eb02780 d531709 4a37dab c4d6bf6 4a37dab 891e37e c4d6bf6 4a37dab c4d6bf6 891e37e 2084afa 891e37e c4d6bf6 891e37e d531709 5f58cac 63b59c5 eb02780 5f58cac 556b4ae 2084afa 556b4ae 5f58cac 2084afa 556b4ae d9f5363 556b4ae d531709 eb02780 d531709 c4d6bf6 d531709 2084afa c4d6bf6 5f58cac d531709 5f58cac 2084afa c4d6bf6 2084afa 63b59c5 5f58cac eb02780 2084afa eb02780 5f58cac eb02780 2084afa eb02780 d531709 d9f5363 63b59c5 d9f5363 d531709 687343f c4d6bf6 6cba8bb c4d6bf6 687343f eb02780 c4d6bf6 d531709 2084afa c4d6bf6 2084afa 04f0241 c4d6bf6 2bc6026 2084afa 5f58cac eb02780 d9f5363 5f58cac 2084afa eb02780 d531709 521091c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import gradio as gr
from huggingface_hub import snapshot_download
from threading import Thread
import time
import base64
import numpy as np
import requests
import traceback
from dataclasses import dataclass, field
import io
from pydub import AudioSegment
import librosa
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
import tempfile
from server import serve
repo_id = "gpt-omni/mini-omni"
snapshot_download(repo_id, local_dir="./checkpoint", revision="main")
IP = "0.0.0.0"
PORT = 60808
thread = Thread(target=serve, daemon=True)
thread.start()
API_URL = "http://0.0.0.0:60808/chat"
# recording parameters
IN_CHANNELS = 1
IN_RATE = 24000
IN_CHUNK = 1024
IN_SAMPLE_WIDTH = 2
VAD_STRIDE = 0.5
# playing parameters
OUT_CHANNELS = 1
OUT_RATE = 24000
OUT_SAMPLE_WIDTH = 2
OUT_CHUNK = 5760
OUT_CHUNK = 20 * 4096
OUT_RATE = 24000
OUT_CHANNELS = 1
def run_vad(ori_audio, sr):
_st = time.time()
try:
audio = ori_audio
audio = audio.astype(np.float32) / 32768.0
sampling_rate = 16000
if sr != sampling_rate:
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
vad_parameters = {}
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate
if sr != sampling_rate:
# resample to original sampling rate
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
else:
vad_audio = audio
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
vad_audio_bytes = vad_audio.tobytes()
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
except Exception as e:
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
print(msg)
return -1, ori_audio, round(time.time() - _st, 4)
def warm_up():
frames = b"\x00\x00" * 1024 * 2 # 1024 frames of 2 bytes each
dur, frames, tcost = run_vad(frames, 16000)
print(f"warm up done, time_cost: {tcost:.3f} s")
warm_up()
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
started_talking: bool = False
stopped: bool = False
conversation: list = field(default_factory=list)
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
"""Take in the stream, determine if a pause happened"""
temp_audio = audio
dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate)
duration = len(audio) / sampling_rate
if dur_vad > 0.5 and not state.started_talking:
print("started talking")
state.started_talking = True
return False
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
return (duration - dur_vad) > 1
def speaking(audio_bytes: str):
base64_encoded = str(base64.b64encode(audio_bytes), encoding="utf-8")
files = {"audio": base64_encoded}
with requests.post(API_URL, json=files, stream=True) as response:
try:
for chunk in response.iter_content(chunk_size=OUT_CHUNK):
if chunk:
# Create an audio segment from the numpy array
audio_segment = AudioSegment(
chunk,
frame_rate=OUT_RATE,
sample_width=OUT_SAMPLE_WIDTH,
channels=OUT_CHANNELS,
)
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
mp3_io = io.BytesIO()
audio_segment.export(mp3_io, format="mp3", bitrate="320k")
# Get the MP3 bytes
mp3_bytes = mp3_io.getvalue()
mp3_io.close()
yield mp3_bytes
except Exception as e:
raise gr.Error(f"Error during audio streaming: {e}")
def process_audio(audio: tuple, state: AppState):
if state.stream is None:
state.stream = audio[1]
state.sampling_rate = audio[0]
else:
state.stream = np.concatenate((state.stream, audio[1]))
pause_detected = determine_pause(state.stream, state.sampling_rate, state)
state.pause_detected = pause_detected
if state.pause_detected and state.started_talking:
return gr.Audio(recording=False), state
return None, state
def response(state: AppState):
if not state.pause_detected and not state.started_talking:
return None, AppState()
audio_buffer = io.BytesIO()
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
segment.export(audio_buffer, format="wav")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
f.write(audio_buffer.getvalue())
state.conversation.append({"role": "user",
"content": {"path": f.name,
"mime_type": "audio/wav"}})
output_buffer = b""
for mp3_bytes in speaking(audio_buffer.getvalue()):
output_buffer += mp3_bytes
yield mp3_bytes, state
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as f:
f.write(output_buffer)
state.conversation.append({"role": "assistant",
"content": {"path": f.name,
"mime_type": "audio/mp3"}})
yield None, AppState(conversation=state.conversation)
def start_recording_user(state: AppState):
if not state.stopped:
return gr.Audio(recording=True)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
input_audio = gr.Audio(
label="Input Audio", sources="microphone", type="numpy"
)
with gr.Column():
chatbot = gr.Chatbot(label="Conversation", type="messages")
output_audio = gr.Audio(label="Output Audio", streaming=True, autoplay=True)
state = gr.State(value=AppState())
stream = input_audio.stream(
process_audio,
[input_audio, state],
[input_audio, state],
stream_every=0.50,
time_limit=30,
)
respond = input_audio.stop_recording(
response,
[state],
[output_audio, state]
)
respond.then(lambda s: s.conversation, [state], [chatbot])
restart = output_audio.stop(
start_recording_user,
[state],
[input_audio]
)
cancel = gr.Button("Stop Conversation", variant="stop")
cancel.click(lambda: (AppState(stopped=True), gr.Audio(recording=False)), None,
[state, input_audio], cancels=[respond, restart])
demo.launch()
|