|
import os |
|
import lightning as L |
|
import torch |
|
import time |
|
from snac import SNAC |
|
from litgpt import Tokenizer |
|
from litgpt.utils import ( |
|
num_parameters, |
|
) |
|
from litgpt.generate.base import ( |
|
generate_AA, |
|
generate_ASR, |
|
generate_TA, |
|
generate_TT, |
|
generate_AT, |
|
generate_TA_BATCH, |
|
next_token_batch |
|
) |
|
import soundfile as sf |
|
from litgpt.model import GPT, Config |
|
from lightning.fabric.utilities.load import _lazy_load as lazy_load |
|
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str |
|
from utils.snac_utils import get_snac, generate_audio_data |
|
import whisper |
|
from tqdm import tqdm |
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
torch.set_printoptions(sci_mode=False) |
|
|
|
|
|
|
|
text_vocabsize = 151936 |
|
text_specialtokens = 64 |
|
audio_vocabsize = 4096 |
|
audio_specialtokens = 64 |
|
|
|
padded_text_vocabsize = text_vocabsize + text_specialtokens |
|
padded_audio_vocabsize = audio_vocabsize + audio_specialtokens |
|
|
|
_eot = text_vocabsize |
|
_pad_t = text_vocabsize + 1 |
|
_input_t = text_vocabsize + 2 |
|
_answer_t = text_vocabsize + 3 |
|
_asr = text_vocabsize + 4 |
|
|
|
_eoa = audio_vocabsize |
|
_pad_a = audio_vocabsize + 1 |
|
_input_a = audio_vocabsize + 2 |
|
_answer_a = audio_vocabsize + 3 |
|
_split = audio_vocabsize + 4 |
|
|
|
|
|
def get_input_ids_TA(text, text_tokenizer): |
|
input_ids_item = [[] for _ in range(8)] |
|
text_tokens = text_tokenizer.encode(text) |
|
for i in range(7): |
|
input_ids_item[i] = [layershift(_pad_a, i)] * (len(text_tokens) + 2) + [ |
|
layershift(_answer_a, i) |
|
] |
|
input_ids_item[i] = torch.tensor(input_ids_item[i]).unsqueeze(0) |
|
input_ids_item[-1] = [_input_t] + text_tokens.tolist() + [_eot] + [_answer_t] |
|
input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0) |
|
return input_ids_item |
|
|
|
|
|
def get_input_ids_TT(text, text_tokenizer): |
|
input_ids_item = [[] for i in range(8)] |
|
text_tokens = text_tokenizer.encode(text).tolist() |
|
|
|
for i in range(7): |
|
input_ids_item[i] = torch.tensor( |
|
[layershift(_pad_a, i)] * (len(text_tokens) + 3) |
|
).unsqueeze(0) |
|
input_ids_item[-1] = [_input_t] + text_tokens + [_eot] + [_answer_t] |
|
input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0) |
|
|
|
return input_ids_item |
|
|
|
|
|
def get_input_ids_whisper( |
|
mel, leng, whispermodel, device, |
|
special_token_a=_answer_a, special_token_t=_answer_t, |
|
): |
|
|
|
with torch.no_grad(): |
|
mel = mel.unsqueeze(0).to(device) |
|
|
|
audio_feature = whispermodel.embed_audio(mel)[0][:leng] |
|
|
|
T = audio_feature.size(0) |
|
input_ids = [] |
|
for i in range(7): |
|
input_ids_item = [] |
|
input_ids_item.append(layershift(_input_a, i)) |
|
input_ids_item += [layershift(_pad_a, i)] * T |
|
input_ids_item += [(layershift(_eoa, i)), layershift(special_token_a, i)] |
|
input_ids.append(torch.tensor(input_ids_item).unsqueeze(0)) |
|
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, special_token_t]) |
|
input_ids.append(input_id_T.unsqueeze(0)) |
|
return audio_feature.unsqueeze(0), input_ids |
|
|
|
|
|
def get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device): |
|
with torch.no_grad(): |
|
mel = mel.unsqueeze(0).to(device) |
|
|
|
audio_feature = whispermodel.embed_audio(mel)[0][:leng] |
|
T = audio_feature.size(0) |
|
input_ids_AA = [] |
|
for i in range(7): |
|
input_ids_item = [] |
|
input_ids_item.append(layershift(_input_a, i)) |
|
input_ids_item += [layershift(_pad_a, i)] * T |
|
input_ids_item += [(layershift(_eoa, i)), layershift(_answer_a, i)] |
|
input_ids_AA.append(torch.tensor(input_ids_item)) |
|
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t]) |
|
input_ids_AA.append(input_id_T) |
|
|
|
input_ids_AT = [] |
|
for i in range(7): |
|
input_ids_item = [] |
|
input_ids_item.append(layershift(_input_a, i)) |
|
input_ids_item += [layershift(_pad_a, i)] * T |
|
input_ids_item += [(layershift(_eoa, i)), layershift(_pad_a, i)] |
|
input_ids_AT.append(torch.tensor(input_ids_item)) |
|
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t]) |
|
input_ids_AT.append(input_id_T) |
|
|
|
input_ids = [input_ids_AA, input_ids_AT] |
|
stacked_inputids = [[] for _ in range(8)] |
|
for i in range(2): |
|
for j in range(8): |
|
stacked_inputids[j].append(input_ids[i][j]) |
|
stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids] |
|
return torch.stack([audio_feature, audio_feature]), stacked_inputids |
|
|
|
|
|
def load_audio(path): |
|
audio = whisper.load_audio(path) |
|
duration_ms = (len(audio) / 16000) * 1000 |
|
audio = whisper.pad_or_trim(audio) |
|
mel = whisper.log_mel_spectrogram(audio) |
|
return mel, int(duration_ms / 20) + 1 |
|
|
|
|
|
def A1_A2_batch(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step, |
|
snacmodel, out_dir=None): |
|
with fabric.init_tensor(): |
|
model.set_kv_cache(batch_size=2) |
|
tokenlist = generate_TA_BATCH( |
|
model, |
|
audio_feature, |
|
input_ids, |
|
[leng, leng], |
|
["A1A2", "A1T2"], |
|
max_returned_tokens=2048, |
|
temperature=0.9, |
|
top_k=1, |
|
eos_id_a=_eoa, |
|
eos_id_t=_eot, |
|
pad_id_t=_pad_t, |
|
shift=padded_text_vocabsize, |
|
include_prompt=True, |
|
generate_text=True, |
|
) |
|
text_tokenlist = tokenlist[-1] |
|
if text_vocabsize in text_tokenlist: |
|
text_tokenlist = text_tokenlist[: text_tokenlist.index(text_vocabsize)] |
|
text = text_tokenizer.decode(torch.tensor(text_tokenlist)).strip() |
|
|
|
audio_tokenlist = tokenlist[:-1] |
|
audiolist = reconscruct_snac(audio_tokenlist) |
|
audio = reconstruct_tensors(audiolist) |
|
if out_dir is None: |
|
out_dir = "./output/default/A1-A2-batch" |
|
else: |
|
out_dir = out_dir + "/A1-A2-batch" |
|
if not os.path.exists(out_dir): |
|
os.makedirs(out_dir) |
|
with torch.inference_mode(): |
|
audio_hat = snacmodel.decode(audio) |
|
sf.write( |
|
f"{out_dir}/{step:02d}.wav", |
|
audio_hat.squeeze().cpu().numpy(), |
|
24000, |
|
) |
|
model.clear_kv_cache() |
|
return text |
|
|
|
|
|
def A1_T2(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step): |
|
with fabric.init_tensor(): |
|
model.set_kv_cache(batch_size=1) |
|
tokenlist = generate_AT( |
|
model, |
|
audio_feature, |
|
input_ids, |
|
[leng], |
|
["AT"], |
|
max_returned_tokens=2048, |
|
temperature=0.9, |
|
top_k=1, |
|
eos_id_a=_eoa, |
|
eos_id_t=_eot, |
|
pad_id_t=_pad_t, |
|
shift=padded_text_vocabsize, |
|
include_prompt=True, |
|
generate_text=True, |
|
) |
|
return text_tokenizer.decode(torch.tensor(tokenlist)).strip() |
|
|
|
|
|
def A1_A2(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step, |
|
snacmodel, out_dir=None): |
|
with fabric.init_tensor(): |
|
model.set_kv_cache(batch_size=1) |
|
tokenlist = generate_AA( |
|
model, |
|
audio_feature, |
|
input_ids, |
|
[leng], |
|
["A1T2"], |
|
max_returned_tokens=2048, |
|
temperature=0.9, |
|
top_k=1, |
|
eos_id_a=_eoa, |
|
eos_id_t=_eot, |
|
pad_id_t=_pad_t, |
|
shift=padded_text_vocabsize, |
|
include_prompt=True, |
|
generate_text=True, |
|
) |
|
audiolist = reconscruct_snac(tokenlist) |
|
tokenlist = tokenlist[-1] |
|
if text_vocabsize in tokenlist: |
|
tokenlist = tokenlist[: tokenlist.index(text_vocabsize)] |
|
if out_dir is None: |
|
out_dir = "./output/default/A1-A2" |
|
else: |
|
out_dir = out_dir + "/A1-A2" |
|
if not os.path.exists(out_dir): |
|
os.makedirs(out_dir) |
|
|
|
audio = reconstruct_tensors(audiolist) |
|
with torch.inference_mode(): |
|
audio_hat = snacmodel.decode(audio) |
|
sf.write( |
|
f"{out_dir}/{step:02d}.wav", |
|
audio_hat.squeeze().cpu().numpy(), |
|
24000, |
|
) |
|
model.clear_kv_cache() |
|
return text_tokenizer.decode(torch.tensor(tokenlist)).strip() |
|
|
|
|
|
def A1_T1(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step): |
|
with fabric.init_tensor(): |
|
model.set_kv_cache(batch_size=1) |
|
tokenlist = generate_ASR( |
|
model, |
|
audio_feature, |
|
input_ids, |
|
[leng], |
|
["A1T1"], |
|
max_returned_tokens=2048, |
|
temperature=0.9, |
|
top_k=1, |
|
eos_id_a=_eoa, |
|
eos_id_t=_eot, |
|
pad_id_t=_pad_t, |
|
shift=padded_text_vocabsize, |
|
include_prompt=True, |
|
generate_text=True, |
|
) |
|
model.clear_kv_cache() |
|
return text_tokenizer.decode(torch.tensor(tokenlist)).strip() |
|
|
|
|
|
def T1_A2(fabric, input_ids, model, text_tokenizer, step, |
|
snacmodel, out_dir=None): |
|
with fabric.init_tensor(): |
|
model.set_kv_cache(batch_size=1) |
|
tokenlist = generate_TA( |
|
model, |
|
None, |
|
input_ids, |
|
None, |
|
["T1A2"], |
|
max_returned_tokens=2048, |
|
temperature=0.9, |
|
top_k=1, |
|
eos_id_a=_eoa, |
|
eos_id_t=_eot, |
|
pad_id_t=_pad_t, |
|
shift=padded_text_vocabsize, |
|
include_prompt=True, |
|
generate_text=True, |
|
) |
|
|
|
audiolist = reconscruct_snac(tokenlist) |
|
tokenlist = tokenlist[-1] |
|
|
|
if text_vocabsize in tokenlist: |
|
tokenlist = tokenlist[: tokenlist.index(text_vocabsize)] |
|
audio = reconstruct_tensors(audiolist) |
|
if out_dir is None: |
|
out_dir = "./output/default/T1-A2" |
|
else: |
|
out_dir = out_dir + "/T1-A2" |
|
if not os.path.exists(out_dir): |
|
os.makedirs(out_dir) |
|
|
|
with torch.inference_mode(): |
|
audio_hat = snacmodel.decode(audio) |
|
sf.write( |
|
f"{out_dir}/{step:02d}.wav", |
|
audio_hat.squeeze().cpu().numpy(), |
|
24000, |
|
) |
|
model.clear_kv_cache() |
|
return text_tokenizer.decode(torch.tensor(tokenlist)).strip() |
|
|
|
|
|
def T1_T2(fabric, input_ids, model, text_tokenizer, step): |
|
|
|
with fabric.init_tensor(): |
|
model.set_kv_cache(batch_size=1) |
|
tokenlist = generate_TT( |
|
model, |
|
None, |
|
input_ids, |
|
None, |
|
["T1T2"], |
|
max_returned_tokens=2048, |
|
temperature=0.9, |
|
top_k=1, |
|
eos_id_a=_eoa, |
|
eos_id_t=_eot, |
|
pad_id_t=_pad_t, |
|
shift=padded_text_vocabsize, |
|
include_prompt=True, |
|
generate_text=True, |
|
) |
|
model.clear_kv_cache() |
|
return text_tokenizer.decode(torch.tensor(tokenlist)).strip() |
|
|
|
|
|
def load_model(ckpt_dir, device): |
|
snacmodel = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device) |
|
whispermodel = whisper.load_model("small").to(device) |
|
text_tokenizer = Tokenizer(ckpt_dir) |
|
fabric = L.Fabric(devices=1, strategy="auto") |
|
config = Config.from_file(ckpt_dir + "/model_config.yaml") |
|
config.post_adapter = False |
|
|
|
with fabric.init_module(empty_init=False): |
|
model = GPT(config) |
|
|
|
model = fabric.setup(model) |
|
state_dict = lazy_load(ckpt_dir + "/lit_model.pth") |
|
model.load_state_dict(state_dict, strict=True) |
|
model.to(device).eval() |
|
|
|
return fabric, model, text_tokenizer, snacmodel, whispermodel |
|
|
|
|
|
def download_model(ckpt_dir): |
|
repo_id = "gpt-omni/mini-omni" |
|
snapshot_download(repo_id, local_dir=ckpt_dir, revision="main") |
|
|
|
|
|
class OmniInference: |
|
|
|
def __init__(self, ckpt_dir='./checkpoint', device='cuda:0'): |
|
self.device = device |
|
if not os.path.exists(ckpt_dir): |
|
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface") |
|
download_model(ckpt_dir) |
|
self.fabric, self.model, self.text_tokenizer, self.snacmodel, self.whispermodel = load_model(ckpt_dir, device) |
|
|
|
def warm_up(self, sample='./data/samples/output1.wav'): |
|
for _ in self.run_AT_batch_stream(sample): |
|
pass |
|
|
|
@torch.inference_mode() |
|
def run_AT_batch_stream(self, |
|
audio_path, |
|
stream_stride=4, |
|
max_returned_tokens=2048, |
|
temperature=0.9, |
|
top_k=1, |
|
top_p=1.0, |
|
eos_id_a=_eoa, |
|
eos_id_t=_eot, |
|
): |
|
|
|
assert os.path.exists(audio_path), f"audio file {audio_path} not found" |
|
model = self.model |
|
|
|
with self.fabric.init_tensor(): |
|
model.set_kv_cache(batch_size=2,device=self.device) |
|
|
|
mel, leng = load_audio(audio_path) |
|
audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, self.whispermodel, self.device) |
|
T = input_ids[0].size(1) |
|
device = input_ids[0].device |
|
|
|
assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}" |
|
|
|
if model.max_seq_length < max_returned_tokens - 1: |
|
raise NotImplementedError( |
|
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}" |
|
) |
|
|
|
input_pos = torch.tensor([T], device=device) |
|
list_output = [[] for i in range(8)] |
|
tokens_A, token_T = next_token_batch( |
|
model, |
|
audio_feature.to(torch.float32).to(model.device), |
|
input_ids, |
|
[T - 3, T - 3], |
|
["A1T2", "A1T2"], |
|
input_pos=torch.arange(0, T, device=device), |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
) |
|
|
|
for i in range(7): |
|
list_output[i].append(tokens_A[i].tolist()[0]) |
|
list_output[7].append(token_T.tolist()[0]) |
|
|
|
model_input_ids = [[] for i in range(8)] |
|
for i in range(7): |
|
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize + i * padded_audio_vocabsize |
|
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32)) |
|
model_input_ids[i].append(torch.tensor([layershift(4097, i)], device=device)) |
|
model_input_ids[i] = torch.stack(model_input_ids[i]) |
|
|
|
model_input_ids[-1].append(token_T.clone().to(torch.int32)) |
|
model_input_ids[-1].append(token_T.clone().to(torch.int32)) |
|
model_input_ids[-1] = torch.stack(model_input_ids[-1]) |
|
|
|
text_end = False |
|
index = 1 |
|
nums_generate = stream_stride |
|
begin_generate = False |
|
current_index = 0 |
|
for _ in tqdm(range(2, max_returned_tokens - T + 1)): |
|
tokens_A, token_T = next_token_batch( |
|
model, |
|
None, |
|
model_input_ids, |
|
None, |
|
None, |
|
input_pos=input_pos, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
) |
|
|
|
if text_end: |
|
token_T = torch.tensor([_pad_t], device=device) |
|
|
|
if tokens_A[-1] == eos_id_a: |
|
break |
|
|
|
if token_T == eos_id_t: |
|
text_end = True |
|
|
|
for i in range(7): |
|
list_output[i].append(tokens_A[i].tolist()[0]) |
|
list_output[7].append(token_T.tolist()[0]) |
|
|
|
model_input_ids = [[] for i in range(8)] |
|
for i in range(7): |
|
tokens_A[i] = tokens_A[i].clone() +padded_text_vocabsize + i * padded_audio_vocabsize |
|
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32)) |
|
model_input_ids[i].append( |
|
torch.tensor([layershift(4097, i)], device=device) |
|
) |
|
model_input_ids[i] = torch.stack(model_input_ids[i]) |
|
|
|
model_input_ids[-1].append(token_T.clone().to(torch.int32)) |
|
model_input_ids[-1].append(token_T.clone().to(torch.int32)) |
|
model_input_ids[-1] = torch.stack(model_input_ids[-1]) |
|
|
|
if index == 7: |
|
begin_generate = True |
|
|
|
if begin_generate: |
|
current_index += 1 |
|
if current_index == nums_generate: |
|
current_index = 0 |
|
snac = get_snac(list_output, index, nums_generate) |
|
audio_stream = generate_audio_data(snac, self.snacmodel, self.device) |
|
yield audio_stream |
|
|
|
input_pos = input_pos.add_(1) |
|
index += 1 |
|
text = self.text_tokenizer.decode(torch.tensor(list_output[-1])) |
|
print(f"text output: {text}") |
|
model.clear_kv_cache() |
|
return list_output |
|
|
|
|
|
def test_infer(): |
|
device = "cuda:0" |
|
out_dir = f"./output/{get_time_str()}" |
|
ckpt_dir = f"./checkpoint" |
|
if not os.path.exists(ckpt_dir): |
|
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface") |
|
download_model(ckpt_dir) |
|
|
|
fabric, model, text_tokenizer, snacmodel, whispermodel = load_model(ckpt_dir, device) |
|
|
|
task = ['A1A2', 'asr', "T1A2", "AA-BATCH", 'T1T2', 'AT'] |
|
|
|
|
|
|
|
test_audio_list = sorted(os.listdir('./data/samples')) |
|
test_audio_list = [os.path.join('./data/samples', path) for path in test_audio_list] |
|
test_audio_transcripts = [ |
|
"What is your name?", |
|
"what are your hobbies?", |
|
"Do you like beijing", |
|
"How are you feeling today?", |
|
"what is the weather like today?", |
|
] |
|
test_text_list = [ |
|
"What is your name?", |
|
"How are you feeling today?", |
|
"Can you describe your surroundings?", |
|
"What did you do yesterday?", |
|
"What is your favorite book and why?", |
|
"How do you make a cup of tea?", |
|
"What is the weather like today?", |
|
"Can you explain the concept of time?", |
|
"Can you tell me a joke?", |
|
] |
|
|
|
|
|
with torch.no_grad(): |
|
if "A1A2" in task: |
|
print("===============================================================") |
|
print(" testing A1A2") |
|
print("===============================================================") |
|
step = 0 |
|
for path in test_audio_list: |
|
try: |
|
mel, leng = load_audio(path) |
|
audio_feature, input_ids = get_input_ids_whisper(mel, leng, whispermodel, device) |
|
text = A1_A2( |
|
fabric, |
|
audio_feature, |
|
input_ids, |
|
leng, |
|
model, |
|
text_tokenizer, |
|
step, |
|
snacmodel, |
|
out_dir=out_dir, |
|
) |
|
print(f"input: {test_audio_transcripts[step]}") |
|
print(f"output: {text}") |
|
step += 1 |
|
print( |
|
"+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++" |
|
) |
|
except: |
|
print(f"[error] failed to process {path}") |
|
print("===============================================================") |
|
|
|
if 'asr' in task: |
|
print("===============================================================") |
|
print(" testing asr") |
|
print("===============================================================") |
|
|
|
index = 0 |
|
step = 0 |
|
for path in test_audio_list: |
|
mel, leng = load_audio(path) |
|
audio_feature, input_ids = get_input_ids_whisper(mel, leng, whispermodel, device, special_token_a=_pad_a, special_token_t=_asr) |
|
output = A1_T1(fabric, audio_feature, input_ids ,leng, model, text_tokenizer, index).lower().replace(',','').replace('.','').replace('?','') |
|
print(f"audio_path: {path}") |
|
print(f"audio transcript: {test_audio_transcripts[index]}") |
|
print(f"asr output: {output}") |
|
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") |
|
index += 1 |
|
|
|
if "T1A2" in task: |
|
step = 0 |
|
print("\n") |
|
print("===============================================================") |
|
print(" testing T1A2") |
|
print("===============================================================") |
|
for text in test_text_list: |
|
input_ids = get_input_ids_TA(text, text_tokenizer) |
|
text_output = T1_A2(fabric, input_ids, model, text_tokenizer, step, |
|
snacmodel, out_dir=out_dir) |
|
print(f"input: {text}") |
|
print(f"output: {text_output}") |
|
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") |
|
step += 1 |
|
print("===============================================================") |
|
|
|
if "T1T2" in task: |
|
step = 0 |
|
print("\n") |
|
print("===============================================================") |
|
print(" testing T1T2") |
|
print("===============================================================") |
|
|
|
for text in test_text_list: |
|
input_ids = get_input_ids_TT(text, text_tokenizer) |
|
text_output = T1_T2(fabric, input_ids, model, text_tokenizer, step) |
|
print(f" Input: {text}") |
|
print(f"Output: {text_output}") |
|
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") |
|
print("===============================================================") |
|
|
|
if "AT" in task: |
|
print("===============================================================") |
|
print(" testing A1T2") |
|
print("===============================================================") |
|
step = 0 |
|
for path in test_audio_list: |
|
mel, leng = load_audio(path) |
|
audio_feature, input_ids = get_input_ids_whisper( |
|
mel, leng, whispermodel, device, |
|
special_token_a=_pad_a, special_token_t=_answer_t |
|
) |
|
text = A1_T2( |
|
fabric, audio_feature, input_ids, leng, model, text_tokenizer, step |
|
) |
|
print(f"input: {test_audio_transcripts[step]}") |
|
print(f"output: {text}") |
|
step += 1 |
|
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") |
|
print("===============================================================") |
|
|
|
if "AA-BATCH" in task: |
|
print("===============================================================") |
|
print(" testing A1A2-BATCH") |
|
print("===============================================================") |
|
step = 0 |
|
for path in test_audio_list: |
|
mel, leng = load_audio(path) |
|
audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device) |
|
text = A1_A2_batch( |
|
fabric, audio_feature, input_ids, leng, model, text_tokenizer, step, |
|
snacmodel, out_dir=out_dir |
|
) |
|
print(f"input: {test_audio_transcripts[step]}") |
|
print(f"output: {text}") |
|
step += 1 |
|
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") |
|
print("===============================================================") |
|
|
|
print("*********************** test end *****************************") |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
test_infer() |
|
|