import os import pdfplumber import re import gradio as gr from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer from io import BytesIO import torch """ Extract the text from a section of a PDF file between 'wanted_section' and 'next_section'. Parameters: - path (str): The file path to the PDF file. - wanted_section (str): The section to start extracting text from. - next_section (str): The section to stop extracting text at. Returns: - text (str): The extracted text from the specified section range. """ def get_section(path, wanted_section, next_section): print(wanted_section) # Open the PDF file doc = pdfplumber.open(BytesIO(path)) start_page = [] end_page = [] # Find the all the pages for the specified sections for page in range(len(doc.pages)): if len(doc.pages[page].search(wanted_section, return_chars=False, case=False)) > 0: start_page.append(page) if len(doc.pages[page].search(next_section, return_chars=False, case=False)) > 0: end_page.append(page) # Extract the text between the start and end page of the wanted section text = [] for page_num in range(max(start_page), max(end_page)+1): page = doc.pages[page_num] text.append(page.extract_text()) text = " ".join(text) final_text = text.replace("\n", " ") return final_text def extract_between(big_string, start_string, end_string): # Use a non-greedy match for content between start_string and end_string pattern = re.escape(start_string) + '(.*?)' + re.escape(end_string) match = re.search(pattern, big_string, re.DOTALL) if match: # Return the content without the start and end strings return match.group(1) else: # Return None if the pattern is not found return None def format_section1(section1_text): result_section1_dict = {} result_section1_dict['TOPIC'] = extract_between(section1_text, "Sektor", "EZ-Programm") result_section1_dict['PROGRAM'] = extract_between(section1_text, "Sektor", "EZ-Programm") result_section1_dict['PROJECT DESCRIPTION'] = extract_between(section1_text, "EZ-Programmziel", "Datum der letzten BE") result_section1_dict['PROJECT NAME'] = extract_between(section1_text, "Modul", "Modulziel") result_section1_dict['OBJECTIVE'] = extract_between(section1_text, "Modulziel", "Berichtszeitraum") result_section1_dict['PROGRESS'] = extract_between(section1_text, "Zielerreichung des Moduls", "Massnahme im Zeitplan") result_section1_dict['STATUS'] = extract_between(section1_text, "Massnahme im Zeitplan", "Risikoeinschätzung") result_section1_dict['RECOMMENDATIONS'] = extract_between(section1_text, "Vorschläge zur Modulanpas-", "Voraussichtliche") return result_section1_dict def answer_questions(text,language="de"): # Initialize the zero-shot classification pipeline model_name = "deepset/gelectra-large-germanquad" model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize the QA pipeline qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer) questions = [ "Welches ist das Titel des Moduls?", "Welches ist das Sektor oder das Kernthema?", "Welches ist das Land?", "Zu welchem Program oder EZ-Programm gehort das Projekt?" #"Welche Durchführungsorganisation aus den 4 Varianten 'giz', 'kfw', 'ptb' und 'bgr' implementiert das Projekt?" # "In dem Dokument was steht bei Sektor?", # "In dem Dokument was steht von 'EZ-Programm' bis 'EZ-Programmziel'?", # "In dem Dokument was steht bei EZ-Programmziel?", # "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Modul?", # "In dem Dokument was steht bei Zielerreichung des Moduls?", # "In dem Dokument in dem Abschnitt '1. Kurzbeschreibung' was steht bei Maßnahme im Zeitplan?", # "In dem Dokument was steht bei Vorschläge zur Modulanpassung?", # "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als erstes Datum?", # "In dem Dokument in dem Abschnitt 'Anlage 1: Wirkungsmatrix des Moduls' was steht unter Laufzeit als zweites Datum?" ] # Iterate over each question and get answers for question in questions: result = qa_pipeline(question=question, context=text) # print(f"Question: {question}") # print(f"Answer: {result['answer']}\n") answers_dict[question] = result['answer'] return answers_dict def process_pdf(path): results_dict = {} results_dict["1. Kurzbeschreibung"] = \ get_section(path, "1. Kurzbeschreibung", "2. Einordnung des Moduls") answers = answer_questions(results_dict["1. Kurzbeschreibung"]) return result_section1_dict['TOPIC'] def get_first_page_text(file_data): doc = pdfplumber.open(BytesIO(file_data)) if len(doc.pages): return doc.pages[0].extract_text() if __name__ == "__main__": # Define the Gradio interface # iface = gr.Interface(fn=process_pdf, demo = gr.Interface(fn=process_pdf, inputs=gr.File(type="binary", label="Upload PDF"), outputs=gr.Textbox(label="Extracted Text"), title="PDF Text Extractor", description="Upload a PDF file to extract.") demo.launch()