Spaces:
Running
Running
import os | |
import gradio as gr | |
from .compute import run_model | |
from .utils import load_ct_to_numpy | |
from .utils import load_pred_volume_to_numpy | |
from .utils import nifti_to_glb | |
class WebUI: | |
def __init__( | |
self, | |
model_name: str = None, | |
cwd: str = "/home/user/app/", | |
share: int = 1, | |
): | |
# global states | |
self.images = [] | |
self.pred_images = [] | |
# @TODO: This should be dynamically set based on chosen volume size | |
self.nb_slider_items = 300 | |
self.model_name = model_name | |
self.cwd = cwd | |
self.share = share | |
self.class_name = "airways" # default | |
self.class_names = { | |
"airways": "CT_Airways", | |
} | |
self.result_names = { | |
"airways": "Airway", | |
} | |
# define widgets not to be rendered immediantly, but later on | |
self.slider = gr.Slider( | |
1, | |
self.nb_slider_items, | |
value=1, | |
step=1, | |
label="Which 2D slice to show", | |
) | |
self.volume_renderer = gr.Model3D( | |
clear_color=[0.0, 0.0, 0.0, 0.0], | |
label="3D Model", | |
visible=True, | |
elem_id="model-3d", | |
).style(height=512) | |
def set_class_name(self, value): | |
print("Changed task to:", value) | |
self.class_name = value | |
def combine_ct_and_seg(self, img, pred): | |
return (img, [(pred, self.class_name)]) | |
def upload_file(self, file): | |
return file.name | |
def process(self, mesh_file_name): | |
path = mesh_file_name.name | |
run_model( | |
path, | |
model_path=os.path.join(self.cwd, "resources/models/"), | |
task=self.class_names[self.class_name], | |
name=self.result_names[self.class_name], | |
) | |
nifti_to_glb("prediction.nii.gz") | |
self.images = load_ct_to_numpy(path) | |
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz") | |
return "./prediction.obj" | |
def get_img_pred_pair(self, k): | |
k = int(k) - 1 | |
out = [gr.AnnotatedImage.update(visible=False)] * self.nb_slider_items | |
out[k] = gr.AnnotatedImage.update( | |
self.combine_ct_and_seg(self.images[k], self.pred_images[k]), | |
visible=True, | |
) | |
return out | |
def run(self): | |
css = """ | |
#model-3d { | |
height: 512px; | |
} | |
#model-2d { | |
height: 512px; | |
margin: auto; | |
} | |
#upload { | |
height: 120px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Row(): | |
file_output = gr.File(file_count="single", elem_id="upload") | |
file_output.upload(self.upload_file, file_output, file_output) | |
model_selector = gr.Dropdown( | |
list(self.class_names.keys()), | |
label="Task", | |
info="Which task to perform - one model for" | |
"each brain tumor type and brain extraction", | |
multiselect=False, | |
size="sm", | |
) | |
model_selector.input( | |
fn=lambda x: self.set_class_name(x), | |
inputs=model_selector, | |
outputs=None, | |
) | |
run_btn = gr.Button("Run analysis").style( | |
full_width=False, size="lg" | |
) | |
run_btn.click( | |
fn=lambda x: self.process(x), | |
inputs=file_output, | |
outputs=self.volume_renderer, | |
) | |
with gr.Row(): | |
gr.Examples( | |
examples=[ | |
os.path.join(self.cwd, "test_thorax_CT.nii.gz"), | |
], | |
inputs=file_output, | |
outputs=file_output, | |
fn=self.upload_file, | |
cache_examples=True, | |
) | |
with gr.Row(): | |
with gr.Box(): | |
with gr.Column(): | |
image_boxes = [] | |
for i in range(self.nb_slider_items): | |
visibility = True if i == 1 else False | |
t = gr.AnnotatedImage( | |
visible=visibility, elem_id="model-2d" | |
).style( | |
color_map={self.class_name: "#ffae00"}, | |
height=512, | |
width=512, | |
) | |
image_boxes.append(t) | |
self.slider.input( | |
self.get_img_pred_pair, self.slider, image_boxes | |
) | |
self.slider.render() | |
with gr.Box(): | |
self.volume_renderer.render() | |
# sharing app publicly -> share=True: | |
# https://gradio.app/sharing-your-app/ | |
# inference times > 60 seconds -> need queue(): | |
# https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062 | |
demo.queue().launch( | |
server_name="0.0.0.0", server_port=7860, share=self.share | |
) | |