Spaces:
Running
Running
Renamed to nifti_to_obj and moved to convert
Browse files- demo/src/convert.py +35 -0
- demo/src/gui.py +3 -3
- demo/src/utils.py +0 -34
demo/src/convert.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import nibabel as nib
|
2 |
+
from nibabel.processing import resample_to_output
|
3 |
+
from skimage.measure import marching_cubes
|
4 |
+
|
5 |
+
|
6 |
+
def nifti_to_obj(path, output="prediction.obj"):
|
7 |
+
# load NIFTI into numpy array
|
8 |
+
image = nib.load(path)
|
9 |
+
resampled = resample_to_output(image, [1, 1, 1], order=1)
|
10 |
+
data = resampled.get_fdata().astype("uint8")
|
11 |
+
|
12 |
+
# Create a material with a red diffuse color (RGB value)
|
13 |
+
red_material = "newmtl RedMaterial\nKd 1 0 0" # Red diffuse color (RGB)
|
14 |
+
|
15 |
+
# extract surface
|
16 |
+
verts, faces, normals, values = marching_cubes(data, 0)
|
17 |
+
faces += 1
|
18 |
+
|
19 |
+
with open(output, "w") as thefile:
|
20 |
+
# Write the material definition to the OBJ file
|
21 |
+
thefile.write(red_material + "\n")
|
22 |
+
|
23 |
+
for item in verts:
|
24 |
+
# thefile.write('usemtl RedMaterial\n')
|
25 |
+
thefile.write("v {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
26 |
+
|
27 |
+
for item in normals:
|
28 |
+
thefile.write("vn {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
29 |
+
|
30 |
+
for item in faces:
|
31 |
+
thefile.write(
|
32 |
+
"f {0}//{0} {1}//{1} {2}//{2}\n".format(
|
33 |
+
item[0], item[1], item[2]
|
34 |
+
)
|
35 |
+
)
|
demo/src/gui.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
|
|
5 |
from .css_style import css
|
6 |
from .inference import run_model
|
7 |
from .logger import flush_logs
|
@@ -9,7 +10,7 @@ from .logger import read_logs
|
|
9 |
from .logger import setup_logger
|
10 |
from .utils import load_ct_to_numpy
|
11 |
from .utils import load_pred_volume_to_numpy
|
12 |
-
|
13 |
|
14 |
# setup logging
|
15 |
LOGGER = setup_logger()
|
@@ -82,7 +83,7 @@ class WebUI:
|
|
82 |
name=self.result_names[self.class_name],
|
83 |
)
|
84 |
LOGGER.info("Converting prediction NIfTI to OBJ...")
|
85 |
-
|
86 |
|
87 |
LOGGER.info("Loading CT to numpy...")
|
88 |
self.images = load_ct_to_numpy(path)
|
@@ -113,7 +114,6 @@ class WebUI:
|
|
113 |
with gr.Blocks(css=css) as demo:
|
114 |
with gr.Row():
|
115 |
with gr.Column(visible=True, scale=0.2) as sidebar_left:
|
116 |
-
# gr.Markdown("SideBar Left")
|
117 |
logs = gr.Textbox(
|
118 |
placeholder="\n" * 16,
|
119 |
label="Logs",
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
+
from .convert import nifti_to_obj
|
6 |
from .css_style import css
|
7 |
from .inference import run_model
|
8 |
from .logger import flush_logs
|
|
|
10 |
from .logger import setup_logger
|
11 |
from .utils import load_ct_to_numpy
|
12 |
from .utils import load_pred_volume_to_numpy
|
13 |
+
|
14 |
|
15 |
# setup logging
|
16 |
LOGGER = setup_logger()
|
|
|
83 |
name=self.result_names[self.class_name],
|
84 |
)
|
85 |
LOGGER.info("Converting prediction NIfTI to OBJ...")
|
86 |
+
nifti_to_obj("prediction.nii.gz")
|
87 |
|
88 |
LOGGER.info("Loading CT to numpy...")
|
89 |
self.images = load_ct_to_numpy(path)
|
|
|
114 |
with gr.Blocks(css=css) as demo:
|
115 |
with gr.Row():
|
116 |
with gr.Column(visible=True, scale=0.2) as sidebar_left:
|
|
|
117 |
logs = gr.Textbox(
|
118 |
placeholder="\n" * 16,
|
119 |
label="Logs",
|
demo/src/utils.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
import nibabel as nib
|
2 |
import numpy as np
|
3 |
-
from nibabel.processing import resample_to_output
|
4 |
-
from skimage.measure import marching_cubes
|
5 |
|
6 |
|
7 |
def load_ct_to_numpy(data_path):
|
@@ -38,35 +36,3 @@ def load_pred_volume_to_numpy(data_path):
|
|
38 |
|
39 |
print(data.shape)
|
40 |
return [data[..., i] for i in range(data.shape[-1])]
|
41 |
-
|
42 |
-
|
43 |
-
def nifti_to_glb(path, output="prediction.obj"):
|
44 |
-
# load NIFTI into numpy array
|
45 |
-
image = nib.load(path)
|
46 |
-
resampled = resample_to_output(image, [1, 1, 1], order=1)
|
47 |
-
data = resampled.get_fdata().astype("uint8")
|
48 |
-
|
49 |
-
# Create a material with a red diffuse color (RGB value)
|
50 |
-
red_material = "newmtl RedMaterial\nKd 1 0 0" # Red diffuse color (RGB)
|
51 |
-
|
52 |
-
# extract surface
|
53 |
-
verts, faces, normals, values = marching_cubes(data, 0)
|
54 |
-
faces += 1
|
55 |
-
|
56 |
-
with open(output, "w") as thefile:
|
57 |
-
# Write the material definition to the OBJ file
|
58 |
-
thefile.write(red_material + "\n")
|
59 |
-
|
60 |
-
for item in verts:
|
61 |
-
# thefile.write('usemtl RedMaterial\n')
|
62 |
-
thefile.write("v {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
63 |
-
|
64 |
-
for item in normals:
|
65 |
-
thefile.write("vn {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
66 |
-
|
67 |
-
for item in faces:
|
68 |
-
thefile.write(
|
69 |
-
"f {0}//{0} {1}//{1} {2}//{2}\n".format(
|
70 |
-
item[0], item[1], item[2]
|
71 |
-
)
|
72 |
-
)
|
|
|
1 |
import nibabel as nib
|
2 |
import numpy as np
|
|
|
|
|
3 |
|
4 |
|
5 |
def load_ct_to_numpy(data_path):
|
|
|
36 |
|
37 |
print(data.shape)
|
38 |
return [data[..., i] for i in range(data.shape[-1])]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|