File size: 8,279 Bytes
ddc22b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import os
import gradio as gr
from .convert import nifti_to_obj
from .css_style import css
from .inference import run_model
from .logger import flush_logs
from .logger import read_logs
from .logger import setup_logger
from .utils import load_ct_to_numpy
from .utils import load_pred_volume_to_numpy
# setup logging
LOGGER = setup_logger()
class WebUI:
def __init__(
self,
model_name: str = None,
cwd: str = "/home/user/app/",
share: int = 1,
):
# global states
self.images = []
self.pred_images = []
# @TODO: This should be dynamically set based on chosen volume size
self.nb_slider_items = 820
self.model_name = model_name
self.cwd = cwd
self.share = share
self.class_name = "Lymph Nodes" # default
self.class_names = {
"Lymph Nodes": "CT_LymphNodes",
}
self.result_names = {
"Lymph Nodes": "LymphNodes",
}
# define widgets not to be rendered immediantly, but later on
self.slider = gr.Slider(
minimum=1,
maximum=self.nb_slider_items,
value=1,
step=1,
label="Which 2D slice to show",
)
self.volume_renderer = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
label="3D Model",
show_label=True,
visible=True,
elem_id="model-3d",
camera_position=[90, 180, 768],
).style(height=512)
def set_class_name(self, value):
LOGGER.info(f"Changed task to: {value}")
self.class_name = value
def combine_ct_and_seg(self, img, pred):
return (img, [(pred, self.class_name)])
def upload_file(self, file):
out = file.name
LOGGER.info(f"File uploaded: {out}")
return out
def process(self, mesh_file_name):
path = mesh_file_name.name
run_model(
path,
model_path=os.path.join(self.cwd, "resources/models/"),
task=self.class_names[self.class_name],
name=self.result_names[self.class_name],
)
LOGGER.info("Converting prediction NIfTI to OBJ...")
nifti_to_obj("prediction.nii.gz")
LOGGER.info("Loading CT to numpy...")
self.images = load_ct_to_numpy(path)
LOGGER.info("Loading prediction volume to numpy..")
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
return "./prediction.obj"
def get_img_pred_pair(self, k):
k = int(k)
out = gr.AnnotatedImage(
self.combine_ct_and_seg(self.images[k], self.pred_images[k]),
visible=True,
elem_id="model-2d",
).style(
color_map={self.class_name: "#ffae00"},
height=512,
width=512,
)
return out
def toggle_sidebar(self, state):
state = not state
return gr.update(visible=state), state
def run(self):
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column(visible=True, scale=0.2) as sidebar_left:
logs = gr.Textbox(
placeholder="\n" * 16,
label="Logs",
info="Verbose from inference will be displayed below.",
lines=38,
max_lines=38,
autoscroll=True,
elem_id="logs",
show_copy_button=True,
scroll_to_output=False,
container=True,
line_breaks=True,
)
demo.load(read_logs, None, logs, every=1)
with gr.Column():
with gr.Row():
with gr.Column(scale=0.2, min_width=150):
sidebar_state = gr.State(True)
btn_toggle_sidebar = gr.Button(
"Toggle Sidebar",
elem_id="toggle-button",
)
btn_toggle_sidebar.click(
self.toggle_sidebar,
[sidebar_state],
[sidebar_left, sidebar_state],
)
btn_clear_logs = gr.Button(
"Clear logs", elem_id="logs-button"
)
btn_clear_logs.click(flush_logs, [], [])
file_output = gr.File(
file_count="single", elem_id="upload"
)
file_output.upload(
self.upload_file, file_output, file_output
)
model_selector = gr.Dropdown(
list(self.class_names.keys()),
label="Task",
info="Which structure to segment.",
multiselect=False,
size="sm",
)
model_selector.input(
fn=lambda x: self.set_class_name(x),
inputs=model_selector,
outputs=None,
)
with gr.Column(scale=0.2, min_width=150):
run_btn = gr.Button(
"Run analysis",
variant="primary",
elem_id="run-button",
).style(
full_width=False,
size="lg",
)
run_btn.click(
fn=lambda x: self.process(x),
inputs=file_output,
outputs=self.volume_renderer,
)
with gr.Row():
gr.Examples(
examples=[
os.path.join(self.cwd, "test_thorax_CT.nii.gz"),
],
inputs=file_output,
outputs=file_output,
fn=self.upload_file,
cache_examples=True,
)
gr.Markdown(
"""
**NOTE:** Inference might take several minutes (Lymph nodes: ~8 minutes), see logs to the left. \\
The segmentation will be available in the 2D and 3D viewers below when finished.
"""
)
with gr.Row():
with gr.Box():
with gr.Column():
# create dummy image to be replaced by loaded images
t = gr.AnnotatedImage(
visible=True, elem_id="model-2d"
).style(
color_map={self.class_name: "#ffae00"},
height=512,
width=512,
)
self.slider.input(
self.get_img_pred_pair,
self.slider,
t,
)
self.slider.render()
with gr.Box():
self.volume_renderer.render()
# sharing app publicly -> share=True:
# https://gradio.app/sharing-your-app/
# inference times > 60 seconds -> need queue():
# https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
demo.queue().launch(
server_name="0.0.0.0", server_port=7860, share=self.share
)
|