Dataset update
Browse files
README.md
CHANGED
@@ -17,6 +17,7 @@ app_file: demo/app.py
|
|
17 |
[![license](https://img.shields.io/github/license/DAVFoundation/captain-n3m0.svg?style=flat-square)](https://github.com/raidionics/LyNoS/blob/main/LICENSE.md)
|
18 |
[![CI/CD](https://github.com/raidionics/LyNoS/actions/workflows/deploy.yml/badge.svg)](https://github.com/raidionics/LyNoS/actions/workflows/deploy.yml)
|
19 |
<a target="_blank" href="https://huggingface.co/spaces/andreped/LyNoS"><img src="https://img.shields.io/badge/π€%20Hugging%20Face-Spaces-yellow.svg"></a>
|
|
|
20 |
[![paper](https://img.shields.io/badge/paper-pdf-D12424)](https://doi.org/10.1080/21681163.2022.2043778)
|
21 |
|
22 |
**LyNoS** was developed by SINTEF Medical Image Analysis to accelerate medical AI research.
|
@@ -25,7 +26,54 @@ app_file: demo/app.py
|
|
25 |
|
26 |
## [Brief intro](https://github.com/raidionics/LyNoS#brief-intro)
|
27 |
|
28 |
-
This repository contains the LyNoS dataset described in ["_Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding_"](https://doi.org/10.1080/21681163.2022.2043778).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## [Demo](https://github.com/raidionics/LyNoS#demo) <a target="_blank" href="https://huggingface.co/spaces/andreped/LyNoS"><img src="https://img.shields.io/badge/π€%20Hugging%20Face-Spaces-yellow.svg"></a>
|
31 |
|
|
|
17 |
[![license](https://img.shields.io/github/license/DAVFoundation/captain-n3m0.svg?style=flat-square)](https://github.com/raidionics/LyNoS/blob/main/LICENSE.md)
|
18 |
[![CI/CD](https://github.com/raidionics/LyNoS/actions/workflows/deploy.yml/badge.svg)](https://github.com/raidionics/LyNoS/actions/workflows/deploy.yml)
|
19 |
<a target="_blank" href="https://huggingface.co/spaces/andreped/LyNoS"><img src="https://img.shields.io/badge/π€%20Hugging%20Face-Spaces-yellow.svg"></a>
|
20 |
+
<a href="https://colab.research.google.com/gist/andreped/274bf953771059fd9537877404369bed/lynos-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
|
21 |
[![paper](https://img.shields.io/badge/paper-pdf-D12424)](https://doi.org/10.1080/21681163.2022.2043778)
|
22 |
|
23 |
**LyNoS** was developed by SINTEF Medical Image Analysis to accelerate medical AI research.
|
|
|
26 |
|
27 |
## [Brief intro](https://github.com/raidionics/LyNoS#brief-intro)
|
28 |
|
29 |
+
This repository contains the LyNoS dataset described in ["_Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding_"](https://doi.org/10.1080/21681163.2022.2043778).
|
30 |
+
The dataset has now also been uploaded to Zenodo and the Hugging Face Hub enabling users to more easily access the data through Python API.
|
31 |
+
|
32 |
+
We have also developed a web demo to enable others to easily test the pretrained model presented in the paper. The application was developed using [Gradio](https://www.gradio.app) for the frontend and the segmentation is performed using the [Raidionics](https://raidionics.github.io/) backend.
|
33 |
+
|
34 |
+
## [Dataset](https://github.com/raidionics/LyNoS#data) <a href="https://colab.research.google.com/gist/andreped/274bf953771059fd9537877404369bed/lynos-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
|
35 |
+
|
36 |
+
### [Accessing dataset](https://github.com/raidionics/LyNoS#accessing-dataset)
|
37 |
+
|
38 |
+
The dataset contains 15 CTs with corresponding lymph nodes, azygos, esophagus, and subclavian carotid arteries. The folder structure is described below.
|
39 |
+
|
40 |
+
The easiest way to access the data is through Python with Hugging Face's [datasets](https://pypi.org/project/datasets/) package:
|
41 |
+
```
|
42 |
+
from datasets import load_dataset
|
43 |
+
|
44 |
+
# downloads data from Zenodo through the Hugging Face hub
|
45 |
+
# - might take several minutes (~5 minutes in CoLab)
|
46 |
+
dataset = load_dataset("andreped/LyNoS")
|
47 |
+
print(dataset)
|
48 |
+
|
49 |
+
# list paths of all available patients and corresponding features (ct/lymphnodes/azygos/brachiocephalicveins/esophagus/subclaviancarotidarteries)
|
50 |
+
for d in dataset["test"]:
|
51 |
+
print(d)
|
52 |
+
```
|
53 |
+
|
54 |
+
A detailed interactive demo on how to load and work with the data can be seen on CoLab. Click the CoLab badge <a href="https://colab.research.google.com/gist/andreped/6070d1d2914a9ce5847d4b3e687188b7/aeropath-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> to see the notebook or alternatively click [here](https://github.com/raidionics/AeroPath/blob/main/notebooks/aeropath-load-dataset-example.ipynb) to see it on GitHub.
|
55 |
+
|
56 |
+
|
57 |
+
### [Dataset structure](https://github.com/raidionics/LyNoS#dataset-structure)
|
58 |
+
|
59 |
+
```
|
60 |
+
βββ AeroPath.zip
|
61 |
+
βββ stations_sto.csv
|
62 |
+
βββ AeroPath/
|
63 |
+
βββ Pat1/
|
64 |
+
β βββ pat1_data.nii.gz
|
65 |
+
β βββ pat1_labels_Azygos.nii.gz
|
66 |
+
β βββ pat1_labels_Esophagus.nii.gz
|
67 |
+
β βββ pat1_labels_LymphNodes.nii.gz
|
68 |
+
β βββ pat1_labels_SubCarArt.nii.gz
|
69 |
+
βββ [...]
|
70 |
+
βββ Pat15/
|
71 |
+
βββ pat15_data.nii.gz
|
72 |
+
βββ pat15_labels_Azygos.nii.gz
|
73 |
+
βββ pat15_labels_Esophagus.nii.gz
|
74 |
+
βββ pat15_labels_LymphNodes.nii.gz
|
75 |
+
βββ pat15_labels_SubCarArt.nii.gz
|
76 |
+
```
|
77 |
|
78 |
## [Demo](https://github.com/raidionics/LyNoS#demo) <a target="_blank" href="https://huggingface.co/spaces/andreped/LyNoS"><img src="https://img.shields.io/badge/π€%20Hugging%20Face-Spaces-yellow.svg"></a>
|
79 |
|