Spaces:
Runtime error
Runtime error
import torch, torchvision | |
from torch import nn | |
def create_effnetb2_model(num_classes: int = 3, | |
seed:int=42): | |
"""Creates an EfficientNetB2 feature extractor model and transforms. | |
Args: | |
num_classes (int, optional): Number of output neurons in the output layer. Defaults to 3 | |
seed (int, optional): Random seed value. Defaults to 42. | |
Returns: | |
torchvision.models.efficientnet_b2: EffNetB2 feature extractor model | |
""" | |
# 1. Setup pretrained EffNMetB2 weights | |
effnetb2_weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
effnetb2_transform = effnetb2_weights.transforms() | |
# 2. Setup pretrained model | |
effnetb2 = torchvision.models.efficientnet_b2(weights=effnetb2_weights) | |
# 3. Freeze the base layers | |
for param in effnetb2.parameters(): | |
param.requires_grad = False | |
# 4. Change the classsifier to 3 classes | |
torch.manual_seed(seed) | |
effnetb2.classifier = nn.Sequential( | |
nn.Dropout(p=0.3, inplace=True), | |
nn.Linear(in_features=1408, out_features=num_classes)) | |
return effnetb2, effnetb2_transform | |