import torch, torchvision from torch import nn def create_effnetb2_model(num_classes: int = 3, seed:int=42): """Creates an EfficientNetB2 feature extractor model and transforms. Args: num_classes (int, optional): Number of output neurons in the output layer. Defaults to 3 seed (int, optional): Random seed value. Defaults to 42. Returns: torchvision.models.efficientnet_b2: EffNetB2 feature extractor model """ # 1. Setup pretrained EffNMetB2 weights effnetb2_weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT effnetb2_transform = effnetb2_weights.transforms() # 2. Setup pretrained model effnetb2 = torchvision.models.efficientnet_b2(weights=effnetb2_weights) # 3. Freeze the base layers for param in effnetb2.parameters(): param.requires_grad = False # 4. Change the classsifier to 3 classes torch.manual_seed(seed) effnetb2.classifier = nn.Sequential( nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features=1408, out_features=num_classes)) return effnetb2, effnetb2_transform