Spaces:
Runtime error
Runtime error
import os | |
import app_configs as configs | |
from feedback import Feedback | |
import service | |
import gradio as gr | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import logging | |
from huggingface_hub import hf_hub_download | |
import torch | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger() | |
sam = None #service.get_sam(configs.model_type, configs.model_ckpt_path, configs.device) | |
red = (255,0,0) | |
blue = (0,0,255) | |
def load_sam_instance(): | |
global sam | |
if sam is None: | |
gr.Info('Initialising SAM, hang in there...') | |
if not os.path.exists(configs.model_ckpt_path): | |
chkpt_path = hf_hub_download("ybelkada/segment-anything", configs.model_ckpt_path) | |
else: | |
chkpt_path = configs.model_ckpt_path | |
device = configs.device | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
sam = service.get_sam(configs.model_type, chkpt_path, device) | |
return sam | |
block = gr.Blocks() | |
with block: | |
# states | |
def point_coords_empty(): | |
return [] | |
def point_labels_empty(): | |
return [] | |
raw_image = gr.Image(type='pil', visible=False) | |
point_coords = gr.State(point_coords_empty) | |
point_labels = gr.State(point_labels_empty) | |
masks = gr.State() | |
cutout_idx = gr.State(set()) | |
feedback = gr.State(lambda : Feedback()) | |
# UI | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image(label='Input', height=512, type='pil') | |
masks_annotated_image = gr.AnnotatedImage(label='Segments', height=512) | |
cutout_galary = gr.Gallery(label='Cutouts', object_fit='contain', height=512) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
point_label_radio = gr.Radio(label='Point Label', choices=[1,0], value=1) | |
reset_btn = gr.Button('Reset') | |
run_btn = gr.Button('Run', variant = 'primary') | |
with gr.Column(scale=2): | |
with gr.Accordion('Provide Feedback'): | |
feedback_textbox = gr.Textbox(lines=3, show_label=False, info="Comments (Leave blank to vote without any comments)") | |
with gr.Row(): | |
upvote_button = gr.Button('Upvote') | |
downvote_button = gr.Button('Downvote') | |
# components | |
components = { | |
point_coords, point_labels, raw_image, masks, cutout_idx, | |
feedback, upvote_button, downvote_button, feedback_textbox, | |
input_image, point_label_radio, reset_btn, run_btn, masks_annotated_image} | |
# event - init coords | |
def on_reset_btn_click(raw_image): | |
return raw_image, point_coords_empty(), point_labels_empty(), None, [] | |
reset_btn.click(on_reset_btn_click, [raw_image], [input_image, point_coords, point_labels], queue=False) | |
def on_input_image_upload(input_image): | |
return input_image, point_coords_empty(), point_labels_empty(), None | |
input_image.upload(on_input_image_upload, [input_image], [raw_image, point_coords, point_labels], queue=False) | |
# event - set coords | |
def on_input_image_select(input_image, point_coords, point_labels, point_label_radio, evt: gr.SelectData): | |
x, y = evt.index | |
color = red if point_label_radio == 0 else blue | |
img = np.array(input_image) | |
cv2.circle(img, (x, y), 5, color, -1) | |
img = Image.fromarray(img) | |
point_coords.append([x,y]) | |
point_labels.append(point_label_radio) | |
return img, point_coords, point_labels | |
input_image.select(on_input_image_select, [input_image, point_coords, point_labels, point_label_radio], [input_image, point_coords, point_labels], queue=False) | |
# event - inference | |
def on_run_btn_click(inputs): | |
sam = load_sam_instance() | |
image = inputs[raw_image] | |
if len(inputs[point_coords]) == 0: | |
if configs.enable_segment_all: | |
generated_masks, _ = service.predict_all(sam, image) | |
else: | |
raise gr.Error('Segment-all disabled, set point label(s) before running') | |
else: | |
generated_masks, _ = service.predict_conditioned(sam, | |
image, | |
point_coords=np.array(inputs[point_coords]), | |
point_labels=np.array(inputs[point_labels])) | |
annotated = (image, [(generated_masks[i], f'Mask {i}') for i in range(len(generated_masks))]) | |
inputs[feedback].save_inference( | |
pt_coords=inputs[point_coords], | |
pt_labels=inputs[point_labels], | |
image=inputs[raw_image], | |
mask=generated_masks, | |
) | |
return { | |
masks_annotated_image:annotated, | |
masks: generated_masks, | |
cutout_idx: set(), | |
feedback: inputs[feedback], | |
} | |
run_btn.click(on_run_btn_click, components, [masks_annotated_image, masks, cutout_idx, feedback], queue=True) | |
# event - get cutout | |
def on_masks_annotated_image_select(inputs, evt:gr.SelectData): | |
inputs[cutout_idx].add(evt.index) | |
cutouts = [service.cutout(inputs[raw_image], inputs[masks][idx]) for idx in list(inputs[cutout_idx])] | |
tight_cutouts = [service.crop_empty(cutout) for cutout in cutouts] | |
inputs[feedback].save_feedback(cutout_idx=evt.index) | |
return inputs[cutout_idx], tight_cutouts, inputs[feedback] | |
masks_annotated_image.select(on_masks_annotated_image_select, components, [cutout_idx, cutout_galary, feedback], queue=False) | |
# event - feedback | |
def on_upvote_button_click(inputs): | |
inputs[feedback].save_feedback(like=1, feedback_str=inputs[feedback_textbox]) | |
gr.Info('Thanks for your feedback') | |
return {feedback:inputs[feedback],feedback_textbox:None} | |
upvote_button.click(on_upvote_button_click,components,[feedback, feedback_textbox], queue=False) | |
def on_downvote_button_click(inputs): | |
inputs[feedback].save_feedback(like=-1, feedback_str=inputs[feedback_textbox]) | |
gr.Info('Thanks for your feedback') | |
return {feedback:inputs[feedback],feedback_textbox:None} | |
downvote_button.click(on_downvote_button_click,components,[feedback, feedback_textbox], queue=False) | |
if __name__ == '__main__': | |
block.queue() | |
block.launch() |