File size: 7,963 Bytes
80d1ab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddbeb7c
80d1ab2
ddbeb7c
80d1ab2
 
ddbeb7c
80d1ab2
ddbeb7c
80d1ab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ada2249
c74e7f2
 
ada2249
80d1ab2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import cv2
import numpy as np
from PIL import Image
import json
import gradio as gr
import matplotlib.pyplot as plt

import torch
from torch import nn
import torch.nn.functional as F
import timm
from transformers import DistilBertModel, DistilBertConfig, DistilBertTokenizer

class CFG:
    image_path = './images'
    captions_path = './captions'
    batch_size = 64
    num_workers = 4
    head_lr = 1e-3
    image_encoder_lr = 1e-4
    text_encoder_lr = 1e-5
    weight_decay = 1e-3
    patience = 1
    factor = 0.8
    epochs = 2
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model_name = 'resnet50'
    image_embedding = 2048
    text_encoder_model = "distilbert-base-uncased"
    text_embedding = 768
    text_tokenizer = "distilbert-base-uncased"
    max_length = 200

    pretrained = True # for both image encoder and text encoder
    trainable = True # for both image encoder and text encoder
    temperature = 1.0

    # image size
    size = 224

    # for projection head; used for both image and text encoders
    num_projection_layers = 1
    projection_dim = 256
    dropout = 0.1

class ImageEncoder(nn.Module):
    """
    Encode images to a fixed size vector
    """

    def __init__(
        self, model_name=CFG.model_name, pretrained=CFG.pretrained, trainable=CFG.trainable
    ):
        super().__init__()
        self.model = timm.create_model(
            model_name, pretrained, num_classes=0, global_pool="avg"
        )
        for p in self.model.parameters():
            p.requires_grad = trainable

    def forward(self, x):
        return self.model(x)

class TextEncoder(nn.Module):
    def __init__(self, model_name=CFG.text_encoder_model, pretrained=CFG.pretrained, trainable=CFG.trainable):
        super().__init__()
        if pretrained:
            self.model = DistilBertModel.from_pretrained(model_name)
        else:
            self.model = DistilBertModel(config=DistilBertConfig())

        for p in self.model.parameters():
            p.requires_grad = trainable

        # we are using the CLS token hidden representation as the sentence's embedding
        self.target_token_idx = 0

    def forward(self, input_ids, attention_mask):
        output = self.model(input_ids=input_ids, attention_mask=attention_mask)
        last_hidden_state = output.last_hidden_state
        return last_hidden_state[:, self.target_token_idx, :]

class ProjectionHead(nn.Module):
    def __init__(
        self,
        embedding_dim,
        projection_dim=CFG.projection_dim,
        dropout=CFG.dropout
    ):
        super().__init__()
        self.projection = nn.Linear(embedding_dim, projection_dim)
        self.gelu = nn.GELU()
        self.fc = nn.Linear(projection_dim, projection_dim)
        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(projection_dim)

    def forward(self, x):
        projected = self.projection(x)
        x = self.gelu(projected)
        x = self.fc(x)
        x = self.dropout(x)
        x = x + projected
        x = self.layer_norm(x)
        return x

class CLIPModel(nn.Module):
    def __init__(
        self,
        temperature=CFG.temperature,
        image_embedding=CFG.image_embedding,
        text_embedding=CFG.text_embedding,
    ):
        super().__init__()
        self.image_encoder = ImageEncoder()
        self.text_encoder = TextEncoder()
        self.image_projection = ProjectionHead(embedding_dim=image_embedding)
        self.text_projection = ProjectionHead(embedding_dim=text_embedding)
        self.temperature = temperature

    def forward(self, batch):
        # Getting Image and Text Features
        image_features = self.image_encoder(batch["image"])
        text_features = self.text_encoder(
            input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]
        )
        # Getting Image and Text Embeddings (with same dimension)
        image_embeddings = self.image_projection(image_features)
        text_embeddings = self.text_projection(text_features)

        # Calculating the Loss
        images_similarity = image_embeddings @ text_embeddings.T / self.temperature
        texts_similarity = images_similarity.T
        labels = torch.arange(batch["image"].shape[0]).long().to(CFG.device)

        total_loss = (
            F.cross_entropy(images_similarity, labels) +
            F.cross_entropy(texts_similarity, labels)
        ) / 2

        return total_loss
    
def find_matches_cpu(model, image_embeddings, query, image_filenames, n=4):
    tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)
    encoded_query = tokenizer([query])
    batch = {
        key: torch.tensor(values).to('cpu')
        for key, values in encoded_query.items()
    }
    with torch.no_grad():
        text_features = model.text_encoder(
            input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]
        )
        text_embeddings = model.text_projection(text_features)

    image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
    text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
    dot_similarity = text_embeddings_n @ image_embeddings_n.T

    values, indices = torch.topk(dot_similarity.squeeze(0), n * 5)
    matches = [image_filenames[idx] for idx in indices[::5]]
    return matches

def rle_decode(img_rle_array, img_name, img_size):
    encoded_image = img_rle_array
    # Initialize variables for decoding
    decoded_image = []
    for i in range(0, len(encoded_image), 2):
        pixel_value = encoded_image[i]
        run_length = encoded_image[i + 1]
        decoded_image.extend([pixel_value] * run_length)

    # Convert the decoded image back to a NumPy array
    decoded_array = np.array(decoded_image, dtype=np.uint8)

    # Reshape the decoded array to the original image shape (224, 224)
    decoded_image = decoded_array.reshape(img_size)  # Use original shape

    # Create a PIL Image from the decoded array
    decoded_image = Image.fromarray(decoded_image)

    decoded_image_save_path = './' + str(img_name)
    # Save or display the decoded image
    decoded_image.save(decoded_image_save_path)  # Save the decoded image to a file
    return decoded_image_save_path

def get_matched_image(matches, val_file_dict_loaded):
    img_size = (112, 112)
    match_img_list = []
    for img_name in matches:
        img_rle_array = val_file_dict_loaded[img_name]
        decoded_image_path = rle_decode(img_rle_array, img_name, img_size)
        match_img_list.append(decoded_image_path)
    return match_img_list

def get_grayscale_image(text_query):
    model_inf = CLIPModel().to('cpu')
    model_inf.load_state_dict(torch.load('best_clip_model_cpu.pt', map_location='cpu'))

    clip_image_embeddings_np_inf = np.load('clip_image_embeddings.npy')
    image_embeddings_inf = torch.tensor(clip_image_embeddings_np_inf)

    img_file_names = np.load('val_img_file_names.npy',allow_pickle=True)

    with open("val_imgs_rle_encode.json", "r") as json_file:
        val_file_dict_loaded = json.load(json_file)

    matches = find_matches_cpu(model_inf,
                 image_embeddings_inf,
                 query=text_query,
                 image_filenames=img_file_names,
                 n=1)

    matched_images = get_matched_image(matches, val_file_dict_loaded)
    return matched_images

def gradio_fn(text):
    text_query = str(text)
    match_img_list = get_grayscale_image(text_query)
    pil_img = Image.open(match_img_list[0])
    pil_img = pil_img.resize((224, 224))
    np_img_array = np.array(pil_img)
    return np_img_array

demo = gr.Interface(fn=gradio_fn, 
                    inputs=gr.Textbox(info="Enter the description of image you wish to search, CLIP will give the best image available in corpus that matches your search"), 
                    outputs=gr.Image(height=224, width=224),
                    title="CLIP Image Search")

demo.launch(share=True)