Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import json | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import timm | |
from transformers import DistilBertModel, DistilBertConfig, DistilBertTokenizer | |
class CFG: | |
image_path = './images' | |
captions_path = './captions' | |
batch_size = 64 | |
num_workers = 4 | |
head_lr = 1e-3 | |
image_encoder_lr = 1e-4 | |
text_encoder_lr = 1e-5 | |
weight_decay = 1e-3 | |
patience = 1 | |
factor = 0.8 | |
epochs = 2 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_name = 'resnet50' | |
image_embedding = 2048 | |
text_encoder_model = "distilbert-base-uncased" | |
text_embedding = 768 | |
text_tokenizer = "distilbert-base-uncased" | |
max_length = 200 | |
pretrained = True # for both image encoder and text encoder | |
trainable = True # for both image encoder and text encoder | |
temperature = 1.0 | |
# image size | |
size = 224 | |
# for projection head; used for both image and text encoders | |
num_projection_layers = 1 | |
projection_dim = 256 | |
dropout = 0.1 | |
class ImageEncoder(nn.Module): | |
""" | |
Encode images to a fixed size vector | |
""" | |
def __init__( | |
self, model_name=CFG.model_name, pretrained=CFG.pretrained, trainable=CFG.trainable | |
): | |
super().__init__() | |
self.model = timm.create_model( | |
model_name, pretrained, num_classes=0, global_pool="avg" | |
) | |
for p in self.model.parameters(): | |
p.requires_grad = trainable | |
def forward(self, x): | |
return self.model(x) | |
class TextEncoder(nn.Module): | |
def __init__(self, model_name=CFG.text_encoder_model, pretrained=CFG.pretrained, trainable=CFG.trainable): | |
super().__init__() | |
if pretrained: | |
self.model = DistilBertModel.from_pretrained(model_name) | |
else: | |
self.model = DistilBertModel(config=DistilBertConfig()) | |
for p in self.model.parameters(): | |
p.requires_grad = trainable | |
# we are using the CLS token hidden representation as the sentence's embedding | |
self.target_token_idx = 0 | |
def forward(self, input_ids, attention_mask): | |
output = self.model(input_ids=input_ids, attention_mask=attention_mask) | |
last_hidden_state = output.last_hidden_state | |
return last_hidden_state[:, self.target_token_idx, :] | |
class ProjectionHead(nn.Module): | |
def __init__( | |
self, | |
embedding_dim, | |
projection_dim=CFG.projection_dim, | |
dropout=CFG.dropout | |
): | |
super().__init__() | |
self.projection = nn.Linear(embedding_dim, projection_dim) | |
self.gelu = nn.GELU() | |
self.fc = nn.Linear(projection_dim, projection_dim) | |
self.dropout = nn.Dropout(dropout) | |
self.layer_norm = nn.LayerNorm(projection_dim) | |
def forward(self, x): | |
projected = self.projection(x) | |
x = self.gelu(projected) | |
x = self.fc(x) | |
x = self.dropout(x) | |
x = x + projected | |
x = self.layer_norm(x) | |
return x | |
class CLIPModel(nn.Module): | |
def __init__( | |
self, | |
temperature=CFG.temperature, | |
image_embedding=CFG.image_embedding, | |
text_embedding=CFG.text_embedding, | |
): | |
super().__init__() | |
self.image_encoder = ImageEncoder() | |
self.text_encoder = TextEncoder() | |
self.image_projection = ProjectionHead(embedding_dim=image_embedding) | |
self.text_projection = ProjectionHead(embedding_dim=text_embedding) | |
self.temperature = temperature | |
def forward(self, batch): | |
# Getting Image and Text Features | |
image_features = self.image_encoder(batch["image"]) | |
text_features = self.text_encoder( | |
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"] | |
) | |
# Getting Image and Text Embeddings (with same dimension) | |
image_embeddings = self.image_projection(image_features) | |
text_embeddings = self.text_projection(text_features) | |
# Calculating the Loss | |
images_similarity = image_embeddings @ text_embeddings.T / self.temperature | |
texts_similarity = images_similarity.T | |
labels = torch.arange(batch["image"].shape[0]).long().to(CFG.device) | |
total_loss = ( | |
F.cross_entropy(images_similarity, labels) + | |
F.cross_entropy(texts_similarity, labels) | |
) / 2 | |
return total_loss | |
def find_matches_cpu(model, image_embeddings, query, image_filenames, n=4): | |
tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer) | |
encoded_query = tokenizer([query]) | |
batch = { | |
key: torch.tensor(values).to('cpu') | |
for key, values in encoded_query.items() | |
} | |
with torch.no_grad(): | |
text_features = model.text_encoder( | |
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"] | |
) | |
text_embeddings = model.text_projection(text_features) | |
image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1) | |
text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1) | |
dot_similarity = text_embeddings_n @ image_embeddings_n.T | |
values, indices = torch.topk(dot_similarity.squeeze(0), n * 5) | |
matches = [image_filenames[idx] for idx in indices[::5]] | |
return matches | |
def rle_decode(img_rle_array, img_name, img_size): | |
encoded_image = img_rle_array | |
# Initialize variables for decoding | |
decoded_image = [] | |
for i in range(0, len(encoded_image), 2): | |
pixel_value = encoded_image[i] | |
run_length = encoded_image[i + 1] | |
decoded_image.extend([pixel_value] * run_length) | |
# Convert the decoded image back to a NumPy array | |
decoded_array = np.array(decoded_image, dtype=np.uint8) | |
# Reshape the decoded array to the original image shape (224, 224) | |
decoded_image = decoded_array.reshape(img_size) # Use original shape | |
# Create a PIL Image from the decoded array | |
decoded_image = Image.fromarray(decoded_image) | |
decoded_image_save_path = './' + str(img_name) | |
# Save or display the decoded image | |
decoded_image.save(decoded_image_save_path) # Save the decoded image to a file | |
return decoded_image_save_path | |
def get_matched_image(matches, val_file_dict_loaded): | |
img_size = (112, 112) | |
match_img_list = [] | |
for img_name in matches: | |
img_rle_array = val_file_dict_loaded[img_name] | |
decoded_image_path = rle_decode(img_rle_array, img_name, img_size) | |
match_img_list.append(decoded_image_path) | |
return match_img_list | |
def get_grayscale_image(text_query): | |
model_inf = CLIPModel().to('cpu') | |
model_inf.load_state_dict(torch.load('best_clip_model_cpu.pt', map_location='cpu')) | |
clip_image_embeddings_np_inf = np.load('clip_image_embeddings.npy') | |
image_embeddings_inf = torch.tensor(clip_image_embeddings_np_inf) | |
img_file_names = np.load('val_img_file_names.npy',allow_pickle=True) | |
with open("val_imgs_rle_encode.json", "r") as json_file: | |
val_file_dict_loaded = json.load(json_file) | |
matches = find_matches_cpu(model_inf, | |
image_embeddings_inf, | |
query=text_query, | |
image_filenames=img_file_names, | |
n=1) | |
matched_images = get_matched_image(matches, val_file_dict_loaded) | |
return matched_images | |
def gradio_fn(text): | |
text_query = str(text) | |
match_img_list = get_grayscale_image(text_query) | |
pil_img = Image.open(match_img_list[0]) | |
pil_img = pil_img.resize((224, 224)) | |
np_img_array = np.array(pil_img) | |
return np_img_array | |
demo = gr.Interface(fn=gradio_fn, | |
inputs="text", | |
outputs=gr.Image(height=224, width=224), | |
title="CLIP Image Search") | |
demo.launch(share=True) |