anilbhatt1's picture
Modified app.py to adjust output height & width of image
ada2249
raw
history blame
7.83 kB
import os
import cv2
import numpy as np
from PIL import Image
import json
import gradio as gr
import matplotlib.pyplot as plt
import torch
from torch import nn
import torch.nn.functional as F
import timm
from transformers import DistilBertModel, DistilBertConfig, DistilBertTokenizer
class CFG:
image_path = './images'
captions_path = './captions'
batch_size = 64
num_workers = 4
head_lr = 1e-3
image_encoder_lr = 1e-4
text_encoder_lr = 1e-5
weight_decay = 1e-3
patience = 1
factor = 0.8
epochs = 2
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name = 'resnet50'
image_embedding = 2048
text_encoder_model = "distilbert-base-uncased"
text_embedding = 768
text_tokenizer = "distilbert-base-uncased"
max_length = 200
pretrained = True # for both image encoder and text encoder
trainable = True # for both image encoder and text encoder
temperature = 1.0
# image size
size = 224
# for projection head; used for both image and text encoders
num_projection_layers = 1
projection_dim = 256
dropout = 0.1
class ImageEncoder(nn.Module):
"""
Encode images to a fixed size vector
"""
def __init__(
self, model_name=CFG.model_name, pretrained=CFG.pretrained, trainable=CFG.trainable
):
super().__init__()
self.model = timm.create_model(
model_name, pretrained, num_classes=0, global_pool="avg"
)
for p in self.model.parameters():
p.requires_grad = trainable
def forward(self, x):
return self.model(x)
class TextEncoder(nn.Module):
def __init__(self, model_name=CFG.text_encoder_model, pretrained=CFG.pretrained, trainable=CFG.trainable):
super().__init__()
if pretrained:
self.model = DistilBertModel.from_pretrained(model_name)
else:
self.model = DistilBertModel(config=DistilBertConfig())
for p in self.model.parameters():
p.requires_grad = trainable
# we are using the CLS token hidden representation as the sentence's embedding
self.target_token_idx = 0
def forward(self, input_ids, attention_mask):
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
last_hidden_state = output.last_hidden_state
return last_hidden_state[:, self.target_token_idx, :]
class ProjectionHead(nn.Module):
def __init__(
self,
embedding_dim,
projection_dim=CFG.projection_dim,
dropout=CFG.dropout
):
super().__init__()
self.projection = nn.Linear(embedding_dim, projection_dim)
self.gelu = nn.GELU()
self.fc = nn.Linear(projection_dim, projection_dim)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(projection_dim)
def forward(self, x):
projected = self.projection(x)
x = self.gelu(projected)
x = self.fc(x)
x = self.dropout(x)
x = x + projected
x = self.layer_norm(x)
return x
class CLIPModel(nn.Module):
def __init__(
self,
temperature=CFG.temperature,
image_embedding=CFG.image_embedding,
text_embedding=CFG.text_embedding,
):
super().__init__()
self.image_encoder = ImageEncoder()
self.text_encoder = TextEncoder()
self.image_projection = ProjectionHead(embedding_dim=image_embedding)
self.text_projection = ProjectionHead(embedding_dim=text_embedding)
self.temperature = temperature
def forward(self, batch):
# Getting Image and Text Features
image_features = self.image_encoder(batch["image"])
text_features = self.text_encoder(
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]
)
# Getting Image and Text Embeddings (with same dimension)
image_embeddings = self.image_projection(image_features)
text_embeddings = self.text_projection(text_features)
# Calculating the Loss
images_similarity = image_embeddings @ text_embeddings.T / self.temperature
texts_similarity = images_similarity.T
labels = torch.arange(batch["image"].shape[0]).long().to(CFG.device)
total_loss = (
F.cross_entropy(images_similarity, labels) +
F.cross_entropy(texts_similarity, labels)
) / 2
return total_loss
def find_matches_cpu(model, image_embeddings, query, image_filenames, n=4):
tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)
encoded_query = tokenizer([query])
batch = {
key: torch.tensor(values).to('cpu')
for key, values in encoded_query.items()
}
with torch.no_grad():
text_features = model.text_encoder(
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]
)
text_embeddings = model.text_projection(text_features)
image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
dot_similarity = text_embeddings_n @ image_embeddings_n.T
values, indices = torch.topk(dot_similarity.squeeze(0), n * 5)
matches = [image_filenames[idx] for idx in indices[::5]]
return matches
def rle_decode(img_rle_array, img_name, img_size):
encoded_image = img_rle_array
# Initialize variables for decoding
decoded_image = []
for i in range(0, len(encoded_image), 2):
pixel_value = encoded_image[i]
run_length = encoded_image[i + 1]
decoded_image.extend([pixel_value] * run_length)
# Convert the decoded image back to a NumPy array
decoded_array = np.array(decoded_image, dtype=np.uint8)
# Reshape the decoded array to the original image shape (224, 224)
decoded_image = decoded_array.reshape(img_size) # Use original shape
# Create a PIL Image from the decoded array
decoded_image = Image.fromarray(decoded_image)
decoded_image_save_path = './' + str(img_name)
# Save or display the decoded image
decoded_image.save(decoded_image_save_path) # Save the decoded image to a file
return decoded_image_save_path
def get_matched_image(matches, val_file_dict_loaded):
img_size = (112, 112)
match_img_list = []
for img_name in matches:
img_rle_array = val_file_dict_loaded[img_name]
decoded_image_path = rle_decode(img_rle_array, img_name, img_size)
match_img_list.append(decoded_image_path)
return match_img_list
def get_grayscale_image(text_query):
model_inf = CLIPModel().to('cpu')
model_inf.load_state_dict(torch.load('best_clip_model_cpu.pt', map_location='cpu'))
clip_image_embeddings_np_inf = np.load('clip_image_embeddings.npy')
image_embeddings_inf = torch.tensor(clip_image_embeddings_np_inf)
img_file_names = np.load('val_img_file_names.npy',allow_pickle=True)
with open("val_imgs_rle_encode.json", "r") as json_file:
val_file_dict_loaded = json.load(json_file)
matches = find_matches_cpu(model_inf,
image_embeddings_inf,
query=text_query,
image_filenames=img_file_names,
n=1)
matched_images = get_matched_image(matches, val_file_dict_loaded)
return matched_images
def gradio_fn(text):
text_query = str(text)
match_img_list = get_grayscale_image(text_query)
pil_img = Image.open(match_img_list[0])
pil_img = pil_img.resize((224, 224))
np_img_array = np.array(pil_img)
return np_img_array
demo = gr.Interface(fn=gradio_fn,
inputs="text",
outputs=gr.Image(height=224, width=224),
title="CLIP Image Search")
demo.launch(share=True)