Spaces:
Sleeping
Sleeping
anilbhatt1
commited on
Commit
•
b447fcc
1
Parent(s):
2e177b5
initial commit
Browse files- app.py +66 -0
- cat.jpg +0 -0
- dog.jpg +0 -0
- model.py +70 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, torchvision
|
2 |
+
from torchvision import transforms
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
import os
|
7 |
+
import lightning as L
|
8 |
+
import torchmetrics
|
9 |
+
from pytorch_grad_cam import GradCAM
|
10 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
11 |
+
from model import LightningModel
|
12 |
+
|
13 |
+
pytorch_model = torch.hub.load('pytorch/vision', 'resnet18', weights=None)
|
14 |
+
pytorch_model.fc = torch.nn.Linear(512, 10)
|
15 |
+
model_pth = './epoch=22-step=16169.ckpt'
|
16 |
+
lightning_model = LightningModel.load_from_checkpoint(checkpoint_path=model_pth, model=pytorch_model, map_location=torch.device("cpu"))
|
17 |
+
|
18 |
+
inv_normalize = transforms.Normalize(
|
19 |
+
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
|
20 |
+
std=[1/0.23, 1/0.23, 1/0.23]
|
21 |
+
)
|
22 |
+
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
23 |
+
'dog', 'frog', 'horse', 'ship', 'truck')
|
24 |
+
|
25 |
+
def inference(input_img, transparency = 0.5, target_layer_number = -1):
|
26 |
+
transform = transforms.ToTensor()
|
27 |
+
org_img = input_img
|
28 |
+
input_img = transform(input_img)
|
29 |
+
input_img = input_img
|
30 |
+
input_img = input_img.unsqueeze(0)
|
31 |
+
lightning_model.eval()
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = lightning_model(input_img)
|
34 |
+
print(f'outputs, {outputs.shape}')
|
35 |
+
softmax = torch.nn.Softmax(dim=0)
|
36 |
+
print()
|
37 |
+
o = softmax(outputs.flatten())
|
38 |
+
confidences = {classes[i]: float(o[i]) for i in range(10)}
|
39 |
+
_, prediction = torch.max(outputs, 1)
|
40 |
+
target_layers = [pytorch_model.layer2[target_layer_number]]
|
41 |
+
cam = GradCAM(model=lightning_model, target_layers=target_layers, use_cuda=False)
|
42 |
+
grayscale_cam = cam(input_tensor=input_img, targets=None)
|
43 |
+
grayscale_cam = grayscale_cam[0, :]
|
44 |
+
img = input_img.squeeze(0)
|
45 |
+
img = inv_normalize(img)
|
46 |
+
rgb_img = np.transpose(img, (1, 2, 0))
|
47 |
+
rgb_img = rgb_img.numpy()
|
48 |
+
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
|
49 |
+
print(confidences)
|
50 |
+
return confidences, visualization
|
51 |
+
|
52 |
+
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
|
53 |
+
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
|
54 |
+
example1 = './cat.jpg'
|
55 |
+
example2 = './dog.jpg'
|
56 |
+
examples = [[example1, 0.5, -1], [example2, 0.5, -1]]
|
57 |
+
gradio_app = gr.Interface(
|
58 |
+
inference,
|
59 |
+
inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value = -2, step=1,
|
60 |
+
label="Which Layer?")],
|
61 |
+
outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)],
|
62 |
+
title = title,
|
63 |
+
description = description,
|
64 |
+
examples = examples,
|
65 |
+
)
|
66 |
+
gradio_app.launch()
|
cat.jpg
ADDED
dog.jpg
ADDED
model.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import lightning as L
|
3 |
+
import torchmetrics
|
4 |
+
|
5 |
+
|
6 |
+
class LightningModel(L.LightningModule):
|
7 |
+
def __init__(self, model, learning_rate, cosine_t_max, mode):
|
8 |
+
super().__init__()
|
9 |
+
|
10 |
+
self.learning_rate = learning_rate
|
11 |
+
self.cosine_t_max = cosine_t_max
|
12 |
+
self.model = model
|
13 |
+
self.example_input_array = torch.Tensor(1, 3, 32, 32)
|
14 |
+
self.mode = mode
|
15 |
+
|
16 |
+
self.save_hyperparameters(ignore=["model"])
|
17 |
+
|
18 |
+
self.train_acc = torchmetrics.Accuracy(task="multiclass", num_classes=10)
|
19 |
+
self.val_acc = torchmetrics.Accuracy(task="multiclass", num_classes=10)
|
20 |
+
self.test_acc = torchmetrics.Accuracy(task="multiclass", num_classes=10)
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
return self.model(x)
|
24 |
+
|
25 |
+
def _shared_step(self, batch):
|
26 |
+
features, true_labels = batch
|
27 |
+
logits = self(features)
|
28 |
+
|
29 |
+
loss = F.cross_entropy(logits, true_labels)
|
30 |
+
predicted_labels = torch.argmax(logits, dim=1)
|
31 |
+
return loss, true_labels, predicted_labels
|
32 |
+
|
33 |
+
def training_step(self, batch, batch_idx):
|
34 |
+
loss, true_labels, predicted_labels = self._shared_step(batch)
|
35 |
+
|
36 |
+
self.log("train_loss", loss)
|
37 |
+
self.train_acc(predicted_labels, true_labels)
|
38 |
+
self.log(
|
39 |
+
"train_acc", self.train_acc, prog_bar=True, on_epoch=True, on_step=False
|
40 |
+
)
|
41 |
+
return loss
|
42 |
+
|
43 |
+
def validation_step(self, batch, batch_idx):
|
44 |
+
loss, true_labels, predicted_labels = self._shared_step(batch)
|
45 |
+
|
46 |
+
self.log("val_loss", loss, prog_bar=True)
|
47 |
+
self.val_acc(predicted_labels, true_labels)
|
48 |
+
self.log("val_acc", self.val_acc, prog_bar=True)
|
49 |
+
|
50 |
+
def test_step(self, batch, batch_idx):
|
51 |
+
loss, true_labels, predicted_labels = self._shared_step(batch)
|
52 |
+
self.test_acc(predicted_labels, true_labels)
|
53 |
+
self.log("test_acc", self.test_acc)
|
54 |
+
|
55 |
+
def configure_optimizers(self):
|
56 |
+
opt = torch.optim.SGD(self.parameters(), lr=self.learning_rate)
|
57 |
+
if self.mode == 'lrfind':
|
58 |
+
return opt
|
59 |
+
else:
|
60 |
+
sch = torch.optim.lr_scheduler.CosineAnnealingLR(opt, T_max=self.cosine_t_max) # New!
|
61 |
+
|
62 |
+
return {
|
63 |
+
"optimizer": opt,
|
64 |
+
"lr_scheduler": {
|
65 |
+
"scheduler": sch,
|
66 |
+
"monitor": "train_loss",
|
67 |
+
"interval": "step", # step means "batch" here, default: epoch
|
68 |
+
"frequency": 1, # default
|
69 |
+
},
|
70 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
gradio
|
3 |
+
grad-cam
|
4 |
+
lightning
|
5 |
+
torchvision
|
6 |
+
pillow
|
7 |
+
numpy
|