# from transformers import DistilBertTokenizer, DistilBertForSequenceClassification # import torch # tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") # model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") # inputs = tokenizer("Hello, my dog is sad", return_tensors="pt") # inputs = tokenizer("Hello, my dog is sad", return_tensors="pt") # with torch.no_grad(): # logits = model(**inputs).logits # predicted_class_id = logits.argmax().item() # model.config.id2label[predicted_class_id] # outputs = model(**inputs) # print(predicted_class_id) from transformers import AutoTokenizer, AutoModelForCausalLM # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") tokenizer.pad_token = tokenizer.eos_token # Load the model model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2") # Example input prompt input_text = "Ann wants to buy a new car" # Tokenize input inputs = tokenizer(input_text, return_tensors="pt",padding=True, truncation=True) # Generate text outputs = model.generate(inputs.input_ids, max_length=100, num_return_sequences=1, top_k=50, top_p=0.9, temperature=0.7,do_sample=True,eos_token_id=None, attention_mask=inputs.attention_mask) print(model.config) # Decode the generated text generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print("Generated Text:\n", generated_text)