|
""" |
|
|
|
Goal Function for seq2sick |
|
------------------------------------------------------- |
|
""" |
|
|
|
|
|
import functools |
|
|
|
import numpy as np |
|
|
|
from textattack.shared.utils import words_from_text |
|
|
|
from .text_to_text_goal_function import TextToTextGoalFunction |
|
|
|
|
|
class NonOverlappingOutput(TextToTextGoalFunction): |
|
"""Ensures that none of the words at a position are equal. |
|
|
|
Defined in seq2sick (https://arxiv.org/pdf/1803.01128.pdf), equation |
|
(3). |
|
""" |
|
|
|
def clear_cache(self): |
|
if self.use_cache: |
|
self._call_model_cache.clear() |
|
get_words_cached.cache_clear() |
|
word_difference_score.cache_clear() |
|
|
|
def _is_goal_complete(self, model_output, _): |
|
return self._get_score(model_output, self.ground_truth_output) == 1.0 |
|
|
|
def _get_score(self, model_output, _): |
|
num_words_diff = word_difference_score(model_output, self.ground_truth_output) |
|
if num_words_diff == 0: |
|
return 0.0 |
|
else: |
|
return num_words_diff / len(get_words_cached(self.ground_truth_output)) |
|
|
|
|
|
@functools.lru_cache(maxsize=2**12) |
|
def get_words_cached(s): |
|
return np.array(words_from_text(s)) |
|
|
|
|
|
@functools.lru_cache(maxsize=2**12) |
|
def word_difference_score(s1, s2): |
|
"""Returns the number of words that are non-overlapping between s1 and |
|
s2.""" |
|
s1_words = get_words_cached(s1) |
|
s2_words = get_words_cached(s2) |
|
min_length = min(len(s1_words), len(s2_words)) |
|
if min_length == 0: |
|
return 0 |
|
s1_words = s1_words[:min_length] |
|
s2_words = s2_words[:min_length] |
|
return (s1_words != s2_words).sum() |
|
|