Spaces:
Sleeping
Sleeping
File size: 10,206 Bytes
5030f92 c2c8656 5030f92 eac20da 9c8a6b2 5030f92 819498b 5030f92 9c8a6b2 5030f92 d6ca2e6 5030f92 9c8a6b2 5030f92 eac20da 5e4d301 9c8a6b2 5e4d301 5030f92 758156d 9c8a6b2 758156d 5030f92 758156d 5030f92 758156d 4c67faf 5030f92 758156d 5030f92 c2c8656 5030f92 c2c8656 5030f92 758156d d6ca2e6 758156d d6ca2e6 5030f92 d6ca2e6 5030f92 d6ca2e6 a16485e 5030f92 c81eed9 d6ca2e6 5030f92 5e4d301 5030f92 6bc4e9f ed10888 6bc4e9f 5030f92 6bc4e9f 5030f92 6bc4e9f 5030f92 6bc4e9f 5030f92 eac20da 5030f92 eac20da 5030f92 eac20da d6ca2e6 5030f92 d6ca2e6 5030f92 eac20da 5030f92 9c8a6b2 5030f92 eac20da d6ca2e6 eac20da 5030f92 d6ca2e6 5030f92 eac20da 5030f92 d6ca2e6 eac20da d6ca2e6 5030f92 eac20da 5030f92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import os
import torch
import gradio as gr
import pandas as pd
from dotenv import load_dotenv
from langchain.callbacks.base import BaseCallbackHandler
from langchain.embeddings import CacheBackedEmbeddings
from langchain_community.retrievers import BM25Retriever
from langchain.retrievers import EnsembleRetriever
from langchain.storage import LocalFileStore
from langchain_anthropic import ChatAnthropic
from langchain_community.chat_models import ChatOllama
from langchain_community.document_loaders import (
NotebookLoader,
TextLoader,
DataFrameLoader,
)
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers.language.language_parser import (
LanguageParser,
)
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import FAISS, Chroma
from langchain_core.callbacks.manager import CallbackManager
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import (
ConfigurableField,
RunnablePassthrough,
RunnableLambda,
)
from langchain_google_genai import GoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import Language, RecursiveCharacterTextSplitter
from langchain_cohere import CohereRerank
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain_community.document_transformers import LongContextReorder
# Load environment variables
load_dotenv()
# Repository directories
repo_root_dir = "./docs/langchain"
repo_dirs = [
"libs/core/langchain_core",
"libs/community/langchain_community",
"libs/experimental/langchain_experimental",
"libs/partners",
"libs/cookbook",
]
repo_dirs = [os.path.join(repo_root_dir, repo) for repo in repo_dirs]
# Load Python documents
py_documents = []
for path in repo_dirs:
py_loader = GenericLoader.from_filesystem(
path,
glob="**/*",
suffixes=[".py"],
parser=LanguageParser(language=Language.PYTHON, parser_threshold=30),
)
py_documents.extend(py_loader.load())
print(f".py νμΌμ κ°μ: {len(py_documents)}")
# Load Markdown documents
mdx_documents = []
for dirpath, _, filenames in os.walk(repo_root_dir):
for file in filenames:
if file.endswith(".mdx") and "*venv/" not in dirpath:
try:
mdx_loader = TextLoader(os.path.join(dirpath, file), encoding="utf-8")
mdx_documents.extend(mdx_loader.load())
except Exception:
pass
print(f".mdx νμΌμ κ°μ: {len(mdx_documents)}")
# Load Jupyter Notebook documents
ipynb_documents = []
for dirpath, _, filenames in os.walk(repo_root_dir):
for file in filenames:
if file.endswith(".ipynb") and "*venv/" not in dirpath:
try:
ipynb_loader = NotebookLoader(
os.path.join(dirpath, file),
include_outputs=True,
max_output_length=20,
remove_newline=True,
)
ipynb_documents.extend(ipynb_loader.load())
except Exception:
pass
print(f".ipynb νμΌμ κ°μ: {len(ipynb_documents)}")
## wikidocs
df = pd.read_parquet("./docs/wikidocs_14314.parquet")
loader = DataFrameLoader(df, page_content_column="content")
wiki_documents = loader.load()
# Split documents into chunks
def split_documents(documents, language, chunk_size=2000, chunk_overlap=200):
splitter = RecursiveCharacterTextSplitter.from_language(
language=language, chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
return splitter.split_documents(documents)
py_docs = split_documents(py_documents, Language.PYTHON)
mdx_docs = split_documents(mdx_documents, Language.MARKDOWN)
ipynb_docs = split_documents(ipynb_documents, Language.PYTHON)
wiki_docs = split_documents(wiki_documents, Language.MARKDOWN)
print(f"λΆν λ .py λ¬Έμμ κ°μ: {len(py_docs)}")
print(f"λΆν λ .mdx λ¬Έμμ κ°μ: {len(mdx_docs)}")
print(f"λΆν λ .ipynb λ¬Έμμ κ°μ: {len(ipynb_docs)}")
print(f"λΆν λ wiki λ¬Έμμ κ°μ: {len(wiki_docs)}")
combined_documents = py_docs + mdx_docs + ipynb_docs + wiki_docs
print(f"μ΄ λνλ¨ΌνΈ κ°μ: {len(combined_documents)}")
# Define the device setting function
def get_device():
if torch.cuda.is_available():
return "cuda:0"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
# Use the function to set the device in model_kwargs
device = get_device()
# Initialize embeddings and cache
store = LocalFileStore("~/.cache/embedding")
embeddings = HuggingFaceBgeEmbeddings(
model_name="BAAI/bge-m3",
model_kwargs={"device": device},
encode_kwargs={"normalize_embeddings": True},
)
cached_embeddings = CacheBackedEmbeddings.from_bytes_store(
embeddings, store, namespace=embeddings.model_name
)
# Create and save FAISS index
FAISS_DB_INDEX = "./langchain_faiss"
if not os.path.exists(FAISS_DB_INDEX):
faiss_db = FAISS.from_documents(
documents=combined_documents,
embedding=cached_embeddings,
)
faiss_db.save_local(folder_path=FAISS_DB_INDEX)
# Create and save Chroma index
CHROMA_DB_INDEX = "./langchain_chroma"
if not os.path.exists(CHROMA_DB_INDEX):
chroma_db = Chroma.from_documents(
documents=combined_documents,
embedding=cached_embeddings,
persist_directory=CHROMA_DB_INDEX,
)
# load vectorstore
faiss_db = FAISS.load_local(
FAISS_DB_INDEX, cached_embeddings, allow_dangerous_deserialization=True
)
chroma_db = Chroma(
embedding_function=cached_embeddings,
persist_directory=CHROMA_DB_INDEX,
)
# Create retrievers
faiss_retriever = faiss_db.as_retriever(search_type="mmr", search_kwargs={"k": 10})
chroma_retriever = chroma_db.as_retriever(
search_type="similarity", search_kwargs={"k": 10}
)
bm25_retriever = BM25Retriever.from_documents(combined_documents)
bm25_retriever.k = 10
ensemble_retriever = EnsembleRetriever(
retrievers=[
bm25_retriever.with_config(run_name="bm25"),
faiss_retriever.with_config(run_name="faiss"),
chroma_retriever.with_config(run_name="chroma"),
],
weights=[0.4, 0.3, 0.3],
)
compressor = CohereRerank(model="rerank-multilingual-v3.0", top_n=10)
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor,
base_retriever=ensemble_retriever,
)
# Create prompt template
prompt = PromptTemplate.from_template(
"""λΉμ μ 20λ
μ°¨ AI κ°λ°μμ
λλ€. λΉμ μ μ무λ μ£Όμ΄μ§ μ§λ¬Έμ λν΄ μ£Όμ΄μ§ λ¬Έμμ μ 보λ₯Ό μ΅λν νμ©νμ¬ λ΅λ³νλ κ²μ
λλ€.
λ¬Έμλ Python μ½λμ λν μ 보λ₯Ό ν¬ν¨νκ³ μμΌλ―λ‘, λ΅λ³ μμ± μ Python μ½λ μ€λν«κ³Ό ꡬ체μ μΈ μ€λͺ
μ ν¬ν¨ν΄ μ£ΌμΈμ.
λ΅λ³μ κ°λ₯ν ν μμΈνκ³ λͺ
ννκ² μμ±νλ©°, μ΄ν΄νκΈ° μ¬μ΄ νκΈλ‘ μμ±ν΄ μ£ΌμΈμ.
νμ¬ μ£Όμ΄μ§ λ¬Έμμμ λ΅λ³μ μ°Ύμ μ μλ κ²½μ°, "νμ¬ μ 곡λ μ§λ¬Έλ§μΌλ‘λ μ νν λ΅λ³μ λ리기 μ΄λ €μμ. μΆκ° μ 보λ₯Ό μ£Όμλ©΄ λ λμμ λ릴 μ μμ κ² κ°μ΅λλ€. μΈμ λ μ§ μ§λ¬Έν΄ μ£ΌμΈμ!"λΌκ³ λ΅λ³ν΄ μ£ΌμΈμ.
κ° λ΅λ³μ μΆμ²(source)λ₯Ό λ°λμ νκΈ°ν΄ μ£ΌμΈμ.
# μ°Έκ³ λ¬Έμ:
{context}
# μ§λ¬Έ:
{question}
# λ΅λ³:
μΆμ²:
- source1
- source2
- ...
"""
)
# Define callback handler for streaming
class StreamCallback(BaseCallbackHandler):
def on_llm_new_token(self, token: str, **kwargs):
print(token, end="", flush=True)
streaming = os.getenv("STREAMING", "true") == "true"
print("STREAMING", streaming)
# Initialize LLMs with configuration
llm = ChatOpenAI(
model="gpt-4o",
temperature=0,
streaming=streaming,
callbacks=[StreamCallback()],
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="gpt4",
claude=ChatAnthropic(
model="claude-3-opus-20240229",
temperature=0,
streaming=True,
callbacks=[StreamCallback()],
),
gpt3=ChatOpenAI(
model="gpt-3.5-turbo",
temperature=0,
streaming=True,
callbacks=[StreamCallback()],
),
gemini=GoogleGenerativeAI(
model="gemini-1.5-flash",
temperature=0,
streaming=True,
callbacks=[StreamCallback()],
),
llama3=ChatGroq(
model_name="llama3-70b-8192",
temperature=0,
streaming=True,
callbacks=[StreamCallback()],
),
ollama=ChatOllama(
model="EEVE-Korean-10.8B:long",
callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),
),
)
# Create retrieval-augmented generation chain
rag_chain = (
{
"context": compression_retriever
| RunnableLambda(LongContextReorder().transform_documents),
"question": RunnablePassthrough(),
}
| prompt
| llm
| StrOutputParser()
)
model_key = os.getenv("MODEL_KEY", "gemini")
print("MODEL_KEY", model_key)
def respond_stream(
message,
history: list[tuple[str, str]],
):
response = ""
for chunk in rag_chain.with_config(configurable={"llm": model_key}).stream(message):
response += chunk
yield response
def respond(
message,
history: list[tuple[str, str]],
):
return rag_chain.with_config(configurable={"llm": model_key}).invoke(message)
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond_stream if streaming else respond,
title="λ체μΈμ λν΄μ λ¬Όμ΄λ³΄μΈμ!",
description="μλ
νμΈμ!\nμ λ λ체μΈμ λν μΈκ³΅μ§λ₯ QAλ΄μ
λλ€. λ체μΈμ λν΄ κΉμ μ§μμ κ°μ§κ³ μμ΄μ. λμ²΄μΈ κ°λ°μ κ΄ν λμμ΄ νμνμλ©΄ μΈμ λ μ§ μ§λ¬Έν΄μ£ΌμΈμ!",
)
if __name__ == "__main__":
demo.launch()
|