File size: 8,742 Bytes
43191f7
 
 
 
 
 
 
 
 
00ebeef
43191f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2e8fe7
43191f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2e8fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43191f7
 
 
 
 
8fb3197
43191f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2e8fe7
 
 
 
 
43191f7
 
 
d2e8fe7
43191f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b775a46
00ebeef
 
b775a46
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import json
import os
from datetime import datetime
from typing import ClassVar

# import dotenv
import lancedb
import srsly
from fasthtml.common import *  # noqa
from fasthtml_hf import setup_hf_backup
from huggingface_hub import snapshot_download
from lancedb.embeddings.base import TextEmbeddingFunction
from lancedb.embeddings.registry import register
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import CohereReranker, ColbertReranker
from lancedb.util import attempt_import_or_raise

# dotenv.load_dotenv()


# download the zotero index (~1200 papers as of July 24, currently hosted on HF) ----
def download_data():
    snapshot_download(
        repo_id="rbiswasfc/zotero_db",
        repo_type="dataset",
        local_dir="./data",
        token=os.environ["HF_TOKEN"],
    )
    print("Data downloaded!")


if not os.path.exists(
    "./data/.lancedb_zotero_v0"
):  # TODO: implement a better check / refresh mechanism
    download_data()


# cohere embedding utils ----
@register("coherev3")
class CohereEmbeddingFunction_2(TextEmbeddingFunction):
    name: str = "embed-english-v3.0"
    client: ClassVar = None

    def ndims(self):
        return 768

    def generate_embeddings(self, texts):
        """
        Get the embeddings for the given texts
        Parameters
        ----------
        texts: list[str] or np.ndarray (of str)
            The texts to embed
        """
        # TODO retry, rate limit, token limit
        self._init_client()
        rs = CohereEmbeddingFunction_2.client.embed(
            texts=texts, model=self.name, input_type="search_document"
        )

        return [emb for emb in rs.embeddings]

    def _init_client(self):
        cohere = attempt_import_or_raise("cohere")
        if CohereEmbeddingFunction_2.client is None:
            CohereEmbeddingFunction_2.client = cohere.Client(
                os.environ["COHERE_API_KEY"]
            )


COHERE_EMBEDDER = CohereEmbeddingFunction_2.create()


# LanceDB model ----
class ArxivModel(LanceModel):
    text: str = COHERE_EMBEDDER.SourceField()
    vector: Vector(1024) = COHERE_EMBEDDER.VectorField()
    title: str
    paper_title: str
    content_type: str
    arxiv_id: str


VERSION = "0.0.0a"
DB = lancedb.connect("./data/.lancedb_zotero_v0")
ID_TO_ABSTRACT = srsly.read_json("./data/id_to_abstract.json")
RERANKERS = {"colbert": ColbertReranker(), "cohere": CohereReranker()}
TBL = DB.open_table("arxiv_zotero_v0")


# format results ----
def _format_results(arxiv_refs):
    results = []
    for arx_id, paper_title in arxiv_refs.items():
        abstract = ID_TO_ABSTRACT.get(arx_id, "")
        # these are all ugly hacks because the data preprocessing is poor. to be fixed v soon.
        if "Abstract\n\n" in abstract:
            abstract = abstract.split("Abstract\n\n")[-1]
        if paper_title in abstract:
            abstract = abstract.split(paper_title)[-1]
        if abstract.startswith("\n"):
            abstract = abstract[1:]
        if "\n\n" in abstract[:20]:
            abstract = "\n\n".join(abstract.split("\n\n")[1:])
        result = {
            "title": paper_title,
            "url": f"https://arxiv.org/abs/{arx_id}",
            "abstract": abstract,
        }
        results.append(result)

    return results


# Search logic ----
def query_db(query: str, k: int = 10, reranker: str = "cohere"):
    raw_results = TBL.search(query, query_type="hybrid").limit(k)
    if reranker is not None:
        ranked_results = raw_results.rerank(reranker=RERANKERS[reranker])
    else:
        ranked_results = raw_results

    ranked_results = ranked_results.to_pandas()
    top_results = ranked_results.groupby("arxiv_id").agg({"_relevance_score": "sum"})
    top_results = top_results.sort_values(by="_relevance_score", ascending=False).head(
        3
    )
    top_results_dict = {
        row["arxiv_id"]: row["paper_title"]
        for index, row in ranked_results.iterrows()
        if row["arxiv_id"] in top_results.index
    }

    final_results = _format_results(top_results_dict)
    return final_results


###########################################################################
# FastHTML app -----
###########################################################################

style = Style("""
        :root {
            color-scheme: dark;
        }
        body {
            max-width: 1200px;
            margin: 0 auto;
            padding: 20px;
            line-height: 1.6;
        }
        #query {
            width: 100%;
            margin-bottom: 1rem;
        }
        #search-form button {
            width: 100%;
        }
        #search-results, #log-entries {
            margin-top: 2rem;
        }
        .log-entry {
            border: 1px solid #ccc;
            padding: 10px;
            margin-bottom: 10px;
        }
        .log-entry pre {
            white-space: pre-wrap;
            word-wrap: break-word;
        }
        .htmx-indicator {
            display: none;
        }
        .htmx-request .htmx-indicator {
            display: inline-block;
        }
        .spinner {
            display: inline-block;
            width: 2.5em;
            height: 2.5em;
            border: 0.3em solid rgba(255,255,255,.3);
            border-radius: 50%;
            border-top-color: #fff;
            animation: spin 1s ease-in-out infinite;
            margin-left: 10px;
            vertical-align: middle;
        }
        @keyframes spin {
            to { transform: rotate(360deg); }
        }
        .searching-text {
            font-size: 1.2em;
            font-weight: bold;
            color: #fff;
            margin-right: 10px;
            vertical-align: middle;
        }
    """)

# get the fast app and route
app, rt = fast_app(live=True, hdrs=(style,))

# Initialize a database to store search logs --
db = database("log_data/search_logs.db")
search_logs = db.t.search_logs
if search_logs not in db.t:
    search_logs.create(
        id=int,
        timestamp=str,
        query=str,
        results=str,
        pk="id",
    )
SearchLog = search_logs.dataclass()


def insert_log_entry(log_entry):
    "Insert a log entry into the database"
    return search_logs.insert(
        SearchLog(
            timestamp=log_entry["timestamp"].isoformat(),
            query=log_entry["query"],
            results=json.dumps(log_entry["results"]),
        )
    )


@rt("/")
async def get():
    query_form = Form(
        Textarea(id="query", name="query", placeholder="Enter your query..."),
        Button("Submit", type="submit"),
        Div(
            Span("Searching...", cls="searching-text htmx-indicator"),
            Span(cls="spinner htmx-indicator"),
            cls="indicator-container",
        ),
        id="search-form",
        hx_post="/search",
        hx_target="#search-results",
        hx_indicator=".indicator-container",
    )

    # results_div = Div(H2("Search Results"), Div(id="search-results", cls="results-container"))
    results_div = Div(Div(id="search-results", cls="results-container"))

    view_logs_link = A("View Logs", href="/logs", cls="view-logs-link")

    return Titled(
        "Zotero Search", Div(query_form, results_div, view_logs_link, cls="container")
    )


def SearchResult(result):
    "Custom component for displaying a search result"
    return Card(
        H4(A(result["title"], href=result["url"], target="_blank")),
        P(result["abstract"]),
        footer=A("Read more →", href=result["url"], target="_blank"),
    )


def log_query_and_results(query, results):
    log_entry = {
        "timestamp": datetime.now(),
        "query": query,
        "results": [{"title": r["title"], "url": r["url"]} for r in results],
    }
    insert_log_entry(log_entry)


@rt("/search")
async def post(query: str):
    results = query_db(query)
    log_query_and_results(query, results)

    return Div(*[SearchResult(r) for r in results], id="search-results")


def LogEntry(entry):
    return Div(
        H4(f"Query: {entry.query}"),
        P(f"Timestamp: {entry.timestamp}"),
        H5("Results:"),
        Pre(entry.results),
        cls="log-entry",
    )


@rt("/logs")
async def get():
    logs = search_logs(order_by="-id", limit=50)  # Get the latest 50 logs
    log_entries = [LogEntry(log) for log in logs]
    return Titled(
        "Logs",
        Div(
            H2("Recent Search Logs"),
            Div(*log_entries, id="log-entries"),
            A("Back to Search", href="/", cls="back-link"),
            cls="container",
        ),
    )


if __name__ == "__main__":
    import uvicorn

    setup_hf_backup(app)
    uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))

    # run_uv()