import gradio as gr import torch from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer ) import os import threading import Thread import spaces import time hf_token = os.environ["HF_TOKEN"] model_name = os.environ["MODEL_NAME"] model = AutoModelForCausalLM.from_pretrained( model_name, token=hf_token ) tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token) terminators = [ tokenizer.eos_token_id, ] if torch.cude.is_available(): device = torch.device("cuda") print(f"Using GPU: {torch.cuda.get_device_name(device)}") else: device = torch.device("cpu") print("Using CPU") model = model.to(device) @spaces.GPU(duration=60) def chat(message, history, temperature, do_sample, max_tokens): chat = [] for item in history: chat.append({ "role": "user", "content": item[0] }) if item[1] is not None: chat.append({ "role": "assistant", "content": item[1] }) chat.append({ "role": "user", "content": message }) messages = tokenizer.apply_chat_template(chat, tokenize=False, add_gereration_prompt=True) model_inputs = tokenizer([messages], return_tensors="pt").to(device) streamer = TextIteratorStreamer( tokenizer, timeout=20, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=max_tokens, temperature=temperature, eos_token_id=terminators ) if temperature == 0: generate_kwargs["do_sample"] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() partial_text = "" for new_text in streamer: partial_text += new_text yield partial_text yield partial_text demo = gr.ChatInterface( fn=chat, examples=[["write me a poem about machine Learning"]], additional_inputs_accordion=gr.Accordion( label="⚙️ Parameters", open=False, render=False ), additional_inputs=[ gr.Slider( minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False ), gr.Checkbox(label="Sampling", value=True), gr.Slider( minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False ), ], stop_btn="Stop Generation", title="Chat with Phi3.5 ERPNext", description="Noew Running antony - Phi3.5 ERPNext" ) demo.launch()