|
|
|
|
|
import os |
|
|
|
import pandas as pd |
|
|
|
from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset |
|
from saicinpainting.evaluation.evaluator import InpaintingEvaluator, lpips_fid100_f1 |
|
from saicinpainting.evaluation.losses.base_loss import SegmentationAwareSSIM, \ |
|
SegmentationClassStats, SSIMScore, LPIPSScore, FIDScore, SegmentationAwareLPIPS, SegmentationAwareFID |
|
from saicinpainting.evaluation.utils import load_yaml |
|
|
|
|
|
def main(args): |
|
config = load_yaml(args.config) |
|
|
|
dataset = PrecomputedInpaintingResultsDataset(args.datadir, args.predictdir, **config.dataset_kwargs) |
|
|
|
metrics = { |
|
'ssim': SSIMScore(), |
|
'lpips': LPIPSScore(), |
|
'fid': FIDScore() |
|
} |
|
enable_segm = config.get('segmentation', dict(enable=False)).get('enable', False) |
|
if enable_segm: |
|
weights_path = os.path.expandvars(config.segmentation.weights_path) |
|
metrics.update(dict( |
|
segm_stats=SegmentationClassStats(weights_path=weights_path), |
|
segm_ssim=SegmentationAwareSSIM(weights_path=weights_path), |
|
segm_lpips=SegmentationAwareLPIPS(weights_path=weights_path), |
|
segm_fid=SegmentationAwareFID(weights_path=weights_path) |
|
)) |
|
evaluator = InpaintingEvaluator(dataset, scores=metrics, |
|
integral_title='lpips_fid100_f1', integral_func=lpips_fid100_f1, |
|
**config.evaluator_kwargs) |
|
|
|
os.makedirs(os.path.dirname(args.outpath), exist_ok=True) |
|
|
|
results = evaluator.evaluate() |
|
|
|
results = pd.DataFrame(results).stack(1).unstack(0) |
|
results.dropna(axis=1, how='all', inplace=True) |
|
results.to_csv(args.outpath, sep='\t', float_format='%.4f') |
|
|
|
if enable_segm: |
|
only_short_results = results[[c for c in results.columns if not c[0].startswith('segm_')]].dropna(axis=1, how='all') |
|
only_short_results.to_csv(args.outpath + '_short', sep='\t', float_format='%.4f') |
|
|
|
print(only_short_results) |
|
|
|
segm_metrics_results = results[['segm_ssim', 'segm_lpips', 'segm_fid']].dropna(axis=1, how='all').transpose().unstack(0).reorder_levels([1, 0], axis=1) |
|
segm_metrics_results.drop(['mean', 'std'], axis=0, inplace=True) |
|
|
|
segm_stats_results = results['segm_stats'].dropna(axis=1, how='all').transpose() |
|
segm_stats_results.index = pd.MultiIndex.from_tuples(n.split('/') for n in segm_stats_results.index) |
|
segm_stats_results = segm_stats_results.unstack(0).reorder_levels([1, 0], axis=1) |
|
segm_stats_results.sort_index(axis=1, inplace=True) |
|
segm_stats_results.dropna(axis=0, how='all', inplace=True) |
|
|
|
segm_results = pd.concat([segm_metrics_results, segm_stats_results], axis=1, sort=True) |
|
segm_results.sort_values(('mask_freq', 'total'), ascending=False, inplace=True) |
|
|
|
segm_results.to_csv(args.outpath + '_segm', sep='\t', float_format='%.4f') |
|
else: |
|
print(results) |
|
|
|
|
|
if __name__ == '__main__': |
|
import argparse |
|
|
|
aparser = argparse.ArgumentParser() |
|
aparser.add_argument('config', type=str, help='Path to evaluation config') |
|
aparser.add_argument('datadir', type=str, |
|
help='Path to folder with images and masks (output of gen_mask_dataset.py)') |
|
aparser.add_argument('predictdir', type=str, |
|
help='Path to folder with predicts (e.g. predict_hifill_baseline.py)') |
|
aparser.add_argument('outpath', type=str, help='Where to put results') |
|
|
|
main(aparser.parse_args()) |
|
|