|
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation |
|
import gradio as gr |
|
from PIL import Image |
|
import matplotlib.pyplot as plt |
|
import torch |
|
import cv2 |
|
|
|
|
|
import os |
|
os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt") |
|
import paddlehub as hub |
|
import gradio as gr |
|
import torch |
|
from PIL import Image, ImageOps |
|
import numpy as np |
|
import imageio |
|
os.mkdir("data") |
|
os.rename("best.ckpt", "models/best.ckpt") |
|
os.mkdir("dataout") |
|
|
|
|
|
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") |
|
clipseg_model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") |
|
|
|
|
|
model = hub.Module(name='U2Net') |
|
|
|
def process_image(image, prompt): |
|
|
|
inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = clipseg_model(**inputs) |
|
preds = outputs.logits |
|
plt.imsave("mask.png", torch.sigmoid(preds)) |
|
mask_image = Image.open("mask.png").convert("RGB") |
|
|
|
image = np.array(image) |
|
imageio.imwrite("./data/data.png", image) |
|
|
|
mask_image = mask_image.resize((image.shape[1], image.shape[0])) |
|
mask_image = cv2.cvtColor(np.array(mask_image), cv2.COLOR_RGB2GRAY) |
|
mask_image = cv2.threshold(mask_image, 70, 255, cv2.THRESH_BINARY)[1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
imageio.imwrite("./data/data_mask.png", mask_image) |
|
os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu') |
|
inpainted_image = "./dataout/data_mask.png" |
|
|
|
|
|
|
|
|
|
|
|
return mask_image, inpainted_image |
|
|
|
interface = gr.Interface(fn=process_image, |
|
inputs=[gr.Image(type="pil"), gr.Textbox(label="Please describe what you want to identify")], |
|
outputs=[gr.Image(type="pil"), gr.Image(type="filepath")], |
|
title="Interactive demo: zero-shot image segmentation with CLIPSeg and inpainting with LAMA", |
|
description="Demo for using CLIPSeg and LAMA to perform zero- and one-shot image segmentation and inpainting. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds.") |
|
|
|
interface.launch(debug=True) |
|
|