|
|
|
|
|
import os |
|
|
|
import numpy as np |
|
import tqdm |
|
from scipy.ndimage.morphology import distance_transform_edt |
|
|
|
from saicinpainting.evaluation.data import InpaintingDataset |
|
from saicinpainting.evaluation.vis import save_item_for_vis |
|
|
|
|
|
def main(args): |
|
dataset = InpaintingDataset(args.datadir, img_suffix='.png') |
|
|
|
area_bins = np.linspace(0, 1, args.area_bins + 1) |
|
|
|
heights = [] |
|
widths = [] |
|
image_areas = [] |
|
hole_areas = [] |
|
hole_area_percents = [] |
|
known_pixel_distances = [] |
|
|
|
area_bins_count = np.zeros(args.area_bins) |
|
area_bin_titles = [f'{area_bins[i] * 100:.0f}-{area_bins[i + 1] * 100:.0f}' for i in range(args.area_bins)] |
|
|
|
bin2i = [[] for _ in range(args.area_bins)] |
|
|
|
for i, item in enumerate(tqdm.tqdm(dataset)): |
|
h, w = item['image'].shape[1:] |
|
heights.append(h) |
|
widths.append(w) |
|
full_area = h * w |
|
image_areas.append(full_area) |
|
bin_mask = item['mask'] > 0.5 |
|
hole_area = bin_mask.sum() |
|
hole_areas.append(hole_area) |
|
hole_percent = hole_area / full_area |
|
hole_area_percents.append(hole_percent) |
|
bin_i = np.clip(np.searchsorted(area_bins, hole_percent) - 1, 0, len(area_bins_count) - 1) |
|
area_bins_count[bin_i] += 1 |
|
bin2i[bin_i].append(i) |
|
|
|
cur_dist = distance_transform_edt(bin_mask) |
|
cur_dist_inside_mask = cur_dist[bin_mask] |
|
known_pixel_distances.append(cur_dist_inside_mask.mean()) |
|
|
|
os.makedirs(args.outdir, exist_ok=True) |
|
with open(os.path.join(args.outdir, 'summary.txt'), 'w') as f: |
|
f.write(f'''Location: {args.datadir} |
|
|
|
Number of samples: {len(dataset)} |
|
|
|
Image height: min {min(heights):5d} max {max(heights):5d} mean {np.mean(heights):.2f} |
|
Image width: min {min(widths):5d} max {max(widths):5d} mean {np.mean(widths):.2f} |
|
Image area: min {min(image_areas):7d} max {max(image_areas):7d} mean {np.mean(image_areas):.2f} |
|
Hole area: min {min(hole_areas):7d} max {max(hole_areas):7d} mean {np.mean(hole_areas):.2f} |
|
Hole area %: min {min(hole_area_percents) * 100:2.2f} max {max(hole_area_percents) * 100:2.2f} mean {np.mean(hole_area_percents) * 100:2.2f} |
|
Dist 2known: min {min(known_pixel_distances):2.2f} max {max(known_pixel_distances):2.2f} mean {np.mean(known_pixel_distances):2.2f} median {np.median(known_pixel_distances):2.2f} |
|
|
|
Stats by hole area %: |
|
''') |
|
for bin_i in range(args.area_bins): |
|
f.write(f'{area_bin_titles[bin_i]}%: ' |
|
f'samples number {area_bins_count[bin_i]}, ' |
|
f'{area_bins_count[bin_i] / len(dataset) * 100:.1f}%\n') |
|
|
|
for bin_i in range(args.area_bins): |
|
bindir = os.path.join(args.outdir, 'samples', area_bin_titles[bin_i]) |
|
os.makedirs(bindir, exist_ok=True) |
|
bin_idx = bin2i[bin_i] |
|
for sample_i in np.random.choice(bin_idx, size=min(len(bin_idx), args.samples_n), replace=False): |
|
save_item_for_vis(dataset[sample_i], os.path.join(bindir, f'{sample_i}.png')) |
|
|
|
|
|
if __name__ == '__main__': |
|
import argparse |
|
|
|
aparser = argparse.ArgumentParser() |
|
aparser.add_argument('datadir', type=str, |
|
help='Path to folder with images and masks (output of gen_mask_dataset.py)') |
|
aparser.add_argument('outdir', type=str, help='Where to put results') |
|
aparser.add_argument('--samples-n', type=int, default=10, |
|
help='Number of sample images with masks to copy for visualization for each area bin') |
|
aparser.add_argument('--area-bins', type=int, default=10, help='How many area bins to have') |
|
|
|
main(aparser.parse_args()) |
|
|