Create predict.py
Browse files- predict.py +89 -0
predict.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
# Example command:
|
4 |
+
# ./bin/predict.py \
|
5 |
+
# model.path=<path to checkpoint, prepared by make_checkpoint.py> \
|
6 |
+
# indir=<path to input data> \
|
7 |
+
# outdir=<where to store predicts>
|
8 |
+
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
import traceback
|
13 |
+
|
14 |
+
from saicinpainting.evaluation.utils import move_to_device
|
15 |
+
|
16 |
+
os.environ['OMP_NUM_THREADS'] = '1'
|
17 |
+
os.environ['OPENBLAS_NUM_THREADS'] = '1'
|
18 |
+
os.environ['MKL_NUM_THREADS'] = '1'
|
19 |
+
os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
|
20 |
+
os.environ['NUMEXPR_NUM_THREADS'] = '1'
|
21 |
+
|
22 |
+
import cv2
|
23 |
+
import hydra
|
24 |
+
import numpy as np
|
25 |
+
import torch
|
26 |
+
import tqdm
|
27 |
+
import yaml
|
28 |
+
from omegaconf import OmegaConf
|
29 |
+
from torch.utils.data._utils.collate import default_collate
|
30 |
+
|
31 |
+
from saicinpainting.training.data.datasets import make_default_val_dataset
|
32 |
+
from saicinpainting.training.trainers import load_checkpoint
|
33 |
+
from saicinpainting.utils import register_debug_signal_handlers
|
34 |
+
|
35 |
+
LOGGER = logging.getLogger(__name__)
|
36 |
+
|
37 |
+
|
38 |
+
@hydra.main(config_path='configs/prediction', config_name='default.yaml')
|
39 |
+
def main(predict_config: OmegaConf):
|
40 |
+
try:
|
41 |
+
register_debug_signal_handlers() # kill -10 <pid> will result in traceback dumped into log
|
42 |
+
|
43 |
+
device = torch.device(predict_config.device)
|
44 |
+
|
45 |
+
train_config_path = os.path.join(predict_config.model.path, 'config.yaml')
|
46 |
+
with open(train_config_path, 'r') as f:
|
47 |
+
train_config = OmegaConf.create(yaml.safe_load(f))
|
48 |
+
|
49 |
+
train_config.training_model.predict_only = True
|
50 |
+
|
51 |
+
out_ext = predict_config.get('out_ext', '.png')
|
52 |
+
|
53 |
+
checkpoint_path = os.path.join(predict_config.model.path,
|
54 |
+
'models',
|
55 |
+
predict_config.model.checkpoint)
|
56 |
+
model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu')
|
57 |
+
model.freeze()
|
58 |
+
model.to(device)
|
59 |
+
|
60 |
+
if not predict_config.indir.endswith('/'):
|
61 |
+
predict_config.indir += '/'
|
62 |
+
|
63 |
+
dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset)
|
64 |
+
with torch.no_grad():
|
65 |
+
for img_i in tqdm.trange(len(dataset)):
|
66 |
+
mask_fname = dataset.mask_filenames[img_i]
|
67 |
+
cur_out_fname = os.path.join(
|
68 |
+
predict_config.outdir,
|
69 |
+
os.path.splitext(mask_fname[len(predict_config.indir):])[0] + out_ext
|
70 |
+
)
|
71 |
+
os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True)
|
72 |
+
|
73 |
+
batch = move_to_device(default_collate([dataset[img_i]]), device)
|
74 |
+
batch['mask'] = (batch['mask'] > 0) * 1
|
75 |
+
batch = model(batch)
|
76 |
+
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy()
|
77 |
+
|
78 |
+
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
|
79 |
+
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR)
|
80 |
+
cv2.imwrite(cur_out_fname, cur_res)
|
81 |
+
except KeyboardInterrupt:
|
82 |
+
LOGGER.warning('Interrupted by user')
|
83 |
+
except Exception as ex:
|
84 |
+
LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}')
|
85 |
+
sys.exit(1)
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == '__main__':
|
89 |
+
main()
|