File size: 3,109 Bytes
99c2b2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a7c71
 
 
8fb62ba
 
 
 
 
 
00a7c71
 
 
 
 
 
 
 
99c2b2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac4ca97
99c2b2d
 
 
 
 
 
 
 
 
00a7c71
 
 
8fb62ba
00a7c71
 
 
 
99c2b2d
 
6234c6a
f9a17d6
00a7c71
f9a17d6
99c2b2d
 
00a7c71
5adec92
6234c6a
99c2b2d
00a7c71
99c2b2d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import openai
import gradio as gr
from azure.cognitiveservices.vision.computervision import ComputerVisionClient
from msrest.authentication import CognitiveServicesCredentials
from azure.storage.blob import BlobClient
#import utils functions
from preprocessing_images import preprocessing_function
from extract_text import azure_ocr
my_container = os.getenv("AZURE_CONTAINER")
subscription_key = os.getenv("SUB_KEY")
endpoint = os.getenv("AZURE_ENDPOINT")
connection_string = os.getenv("AZURE_CON_STRING")
openai.api_key = os.getenv("OPENAI_API_KEY")
computervision_client = ComputerVisionClient(endpoint, CognitiveServicesCredentials(subscription_key))

def ocr_pdf(pdf_url):
    preprocessing_function(pdf_url)
    my_blob = pdf_url.split('/')[-1]
    blob = BlobClient.from_connection_string(conn_str=connection_string, container_name= my_container, blob_name=my_blob)
    with open("answer_paper.pdf", "rb") as data:
        blob.upload_blob(data,overwrite=True) 
    text = azure_ocr(blob.url,computervision_client)
    return text.strip()

# def ocr_pdf(pdf_url2):
#     preprocessing_function(pdf_url2)
#     my_blob = pdf_url2.split('/')[-1]
#     blob = BlobClient.from_connection_string(conn_str=connection_string, container_name= my_container, blob_name=my_blob)
#     with open("answer_paper.pdf", "rb") as data:
#         blob.upload_blob(data,overwrite=True) 
#     text = azure_ocr(blob.url,computervision_client)
#     return text.strip()

def classify_cause(incident_description):
    response = openai.Completion.create(
    engine="text-davinci-003",
    prompt= f"Identify the root cause from the below list:\nincident_description:{incident_description}\n",
    temperature= 0,
    max_tokens= 50,
    n=1,
    stop=None
    #timeout=15,
    )
    classification = response.choices[0].text.strip()
    return classification
    
def classify_class(incident_description):
    response = openai.Completion.create(
    engine="text-davinci-003",
    prompt= f"Classify the following incident description into one of the given classes:Aircraft Autopilot Problem, Auxiliary Power Problem,Cabin Pressure Problem, Engine Problem,Fuel System Problem,Avionics Problem,Communications Problem,Electrical System Problem,Engine Problem,Smoke Problem\nincident_description:{incident_description}\n", 
    temperature= 0,
    max_tokens= 50,
    n=1,
    stop=None
    #timeout=15,
    )
    classification = response.choices[0].text.strip()
    return classification

    
def avatiation(pdf_url):
    pdftext = ocr_pdf(pdf_url)

    
    defect_class = classify_class(pdftext)
    main_issue =  classify_cause(pdftext)
    return main_issue, defect_class



inputs1 = gr.inputs.Textbox(label="Link for aviation log reports")
#inputs2 = gr.inputs.Textbox(label="Link for aviation log reports 2")


outputs = [gr.outputs.Textbox(label="Main Issue of the log report"),
           gr.outputs.Textbox(label="category of the log report")
           ]
           

demo = gr.Interface(fn=avatiation,inputs=inputs1,outputs=outputs, title="ATA Auto classification using OCR and GPT3 ")
demo.launch()