import os import openai import pandas as pd from sklearn.preprocessing import LabelEncoder import numpy as np import gradio as gr openai.api_key = "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" def classify_cause(incident_description): response = openai.Completion.create( engine="text-davinci-003", prompt= f"Identify the root cause from the below list:\nincident_description:{incident_description}\n", temperature= 0, max_tokens= 50, n=1, stop=None #timeout=15, ) classification = response.choices[0].text.strip() return classification def classify_class(incident_description): response = openai.Completion.create( engine="text-davinci-003", prompt= f"Classify the following incident description into one of the given classes:Aircraft Autopilot Problem, Auxiliary Power Problem,Cabin Pressure Problem, Engine Problem,Fuel System Problem,Avionics Problem,Communications Problem,Electrical System Problem,Engine Problem,Fire/Smoke Problem,Fuel System Problem,Ground Service Problem,Hydraulic System Problem,Ice/Frost Problem,Landing Gear Problem,Maintenance Problem,Oxygen System Problem,other problem\nincident_description:{incident_description}\n", temperature= 0, max_tokens= 50, n=1, stop=None #timeout=15, ) classification = response.choices[0].text.strip() return classification def main(incident_description): defect_class = classify_class(incident_description) main_issue = classify_cause(incident_description) return defect_class, main_issue inputs = gr.inputs.Textbox(label="Flight Incident Description") outputs = [gr.outputs.Textbox(label="Main Issue of the flight incident"), gr.outputs.Textbox(label="category of the flight incident")] demo = gr.Interface(fn=main,inputs=inputs,outputs=outputs, title="Flight predictive maintanance root cause") demo.launch()