File size: 15,512 Bytes
293785c
53ccd2b
 
293785c
d968579
293785c
 
77f5007
293785c
 
53ccd2b
77f5007
09e25af
53ccd2b
 
77f5007
53ccd2b
 
 
 
 
 
 
 
c99b3ce
09e25af
53ccd2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263dd71
fd7ecc6
53ccd2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293785c
53ccd2b
7a5d391
 
53ccd2b
 
 
 
 
9cc52c4
53ccd2b
 
c99b3ce
263dd71
53ccd2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40814e0
53ccd2b
 
 
 
 
 
 
 
 
 
 
 
955b30c
53ccd2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import os
import cv2
import time
import torch
import spaces
import subprocess
import numpy as np
import gradio as gr
import urllib.request
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt

from Garage.models.GroundedSegmentAnything.segment_anything.segment_anything import SamPredictor, build_sam, sam_model_registry
from Garage.models.GroundedSegmentAnything.GroundingDINO.groundingdino.util.inference import Model
from Garage import Augmenter


MODEL_DICT = dict(
    vit_h="https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",  # yapf: disable  # noqa
    vit_l="https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",  # yapf: disable  # noqa
    vit_b="https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",  # yapf: disable  # noqa
)

GROUNDING_DINO_CONFIG_PATH = "Garage/models/GroundedSegmentAnything/GroundingDINO_SwinT_OGC.py"
GROUNDING_DINO_CHECKPOINT_PATH = "https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth"
SAM_CHECKPOINT_PATH = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
SAM_ENCODER_VERSION = "vit_h"

class GradioWindow():
    def __init__(self) -> None:
        self.points = []
        self.mask = []
        self.selected_mask = None
        self.segmentation_mask = []
        self.concatenated_masks = None
        self.examples_masks = {
            0: ["dog", "examples/dog_mask.jpg"],
            1: ["bread", "examples/bread_mask.jpg"],
            2: ["room", "examples/room_mask.jpg"],
            3: ["spoon", "examples/spoon_mask.jpg"],
            4: ["cat", "examples/image_mask.jpg"], 
        }

        self.GROUNDING_DINO_CONFIG_PATH = GROUNDING_DINO_CONFIG_PATH
        self.GROUNDING_DINO_CHECKPOINT_PATH = GROUNDING_DINO_CHECKPOINT_PATH
        self.model_type = SAM_ENCODER_VERSION
        self.SAM_CHECKPOINT_PATH = SAM_CHECKPOINT_PATH

        # self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.device = "cpu"
        # for debug
        # self.augmenter = None
        self.augmenter = Augmenter(device=self.device)
        self.setup_model()
        self.main()

    def main(self):
        with gr.Blocks() as self.demo:
            with gr.Row():
                input_img = gr.Image(type="pil", label="Input image", interactive=True)
                selected_mask = gr.Image(type="pil", label="Selected Mask", interactive=True)
                segmented_img = gr.Image(type="pil", label="Selected Segment")

            with gr.Row():
                with gr.Group():
                    gr.Markdown(
                        "## Grounded Segmentation\n"
                        "#### This tool segments the object in the image based on the text prompt via GroundedSAM model. "
                        "You can also load the mask of the object to segment or choose one of the examples below.\n"
                    )
                    self.current_object = gr.Textbox(label="Current object")
                    with gr.Accordion("Advanced options", open=False):
                        self.use_mask = gr.Checkbox(label="Use segmentation mask", value=False)
                        box_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.25, label="Box threshold")
                        text_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.25, label="Text threshold")

                    segment_object = gr.Button("Segment object")
                
                with gr.Column(): 
                    gr.Examples(
                        label="Images Examples",
                        examples=[
                        ["examples/dog.jpg"],
                        ["examples/bread.png"],
                        ["examples/room.jpg"],
                        ["examples/spoon.png"],
                        ["examples/image.jpg"], 
                        ], 
                        inputs=[input_img],
                        examples_per_page=5      
                    )
                    gr.Examples(
                        label="Mask Examples",
                        examples=[
                        [self.examples_masks[0][1]],
                        [self.examples_masks[1][1]],
                        [self.examples_masks[2][1]],
                        [self.examples_masks[3][1]],
                        [self.examples_masks[4][1]], 
                        ], 
                        inputs=[selected_mask, input_img],    
                        outputs=[segmented_img, self.current_object, self.use_mask],
                        fn=self.set_mask,
                        run_on_click=True
                    )

            with gr.Row():
                with gr.Column(): 
                    with gr.Group():
                        gr.Markdown(
                        "## Augmentation\n"
                        "#### This tool generates an augmented image based on the input image, the object to augment, and the target object. "
                        "If you don't specify the target object, the model will generate a random object. "
                        "You can also specify the number of steps, guidance scale, and seed for the generation process.\n"
                        )
                        self.target_object = gr.Textbox(label="Target object")

                        with gr.Accordion("Generation options", open=False):
                            self.iter_number = gr.Number(value=50, label="Steps")
                            self.guidance_scale = gr.Number(value=5, label="Guidance Scale")
                            self.seed = gr.Number(value=1, label="Seed")
                            self.return_prompt = gr.Checkbox(value=True, label="Show generated prompt")

                        enter_prompt = gr.Button("Augment Image")

                with gr.Column():
                    augmented_img = gr.Image(type="pil", label="Augmented Image")
                    generated_prompt = gr.Markdown(
                            f"<div class=\"message\" style=\"text-align: center; \
                                font-size: 18px;\"></div>", 
                            visible=True)

            # Connect the UI and logic
            selected_mask.upload(
                self.set_mask,
                inputs=[selected_mask, input_img],    
                outputs=[segmented_img, self.current_object, self.use_mask],
            )

            segment_object.click(
                self.detect,
                inputs=[input_img, self.current_object, 
                        self.use_mask, box_threshold, 
                        text_threshold],
                outputs=[segmented_img, selected_mask]
            )

            self.use_mask.change(
                fn=self.change_mask_type,
                inputs=[input_img, self.use_mask],
                outputs=[selected_mask, segmented_img],
            )

            segmented_img.select(
                self.select_mask,
                inputs=[input_img],
                outputs=[selected_mask, segmented_img],
            )

            enter_prompt.click(
                self.augment_image,
                inputs=[input_img, self.current_object, self.target_object, 
                        self.iter_number, self.guidance_scale, self.seed, self.return_prompt],
                outputs=[augmented_img, generated_prompt],
            )


    def setup_model(self) -> SamPredictor:
        self.sam = sam_model_registry["vit_h"]()
        self.sam.load_state_dict(torch.utils.model_zoo.load_url(MODEL_DICT["vit_h"]))
        self.sam.to(device=self.device)
        self.sam_predictor = SamPredictor(self.sam)

        self.grounding_dino_model = Model(
            model_config_path=self.GROUNDING_DINO_CONFIG_PATH, 
            model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, 
            device=self.device
            )
        
        print("MODELS LOADED! Device:", self.device)

    def change_mask_type(self, image, is_segmmask):
        self.selected_mask = None
        masks = []
        self.mask = []
        if is_segmmask:
            for segm_mask in self.segmentation_mask:
                gray_mask = np.array(segm_mask)
                if gray_mask.ndim == 3:
                    gray_mask  = gray_mask[:, :, 0]
                    gray_mask = np.where(gray_mask > 200, True, False)
                masks.append(gray_mask)
                self.mask.append(Image.fromarray(gray_mask))
            res, common_mask = self.concatenate_masks(masks, image)
        else:
            for segm_mask in self.segmentation_mask:
                mask = self.get_bbox_mask(segm_mask)
                gray_mask = np.array(mask)
                masks.append(gray_mask)
                self.mask.append(Image.fromarray(gray_mask))
            res, common_mask = self.concatenate_masks(masks, image)
        return common_mask, res

    def get_bbox_mask(self, mask):
        bbox = mask.getbbox()
        new_mask = Image.new("L", mask.size, 0)  # Start with an all-black mask
        draw = ImageDraw.Draw(new_mask)
        if bbox:
            draw.rectangle(bbox, fill=255)
        return new_mask    

    def select_mask(self, image: Image, evt: gr.SelectData):
        self.points = [evt.index[0], evt.index[1]]
        selected_mask = np.zeros_like(image)
        self.selected_mask = None
        for mask in self.mask:
            mask = np.array(mask)
            plt.imshow(mask)
            plt.show()
            print(f"SELECT MASK {mask.shape}, unique {np.unique(mask)}")
            if mask[self.points[1]][self.points[0]]:
                self.selected_mask = Image.fromarray(mask)
                color = np.array([30 / 255, 144 / 255, 255 / 255])
                selected_mask[mask > 0] = color.reshape(1, 1, -1) * 255
                selected_mask = Image.fromarray(selected_mask, mode="RGB")
                break

        res = self.show_mask(selected_mask, image)
        self.concatenated_masks = res
        return self.selected_mask, res
    
    def set_mask(self, mask: Image, image: Image):
        self.selected_mask = mask
        self.segmentation_mask = [mask]
        current_object = None

        for key, value in self.examples_masks.items():
            m = Image.open(value[1])
            if np.array_equal(np.array(m), np.array(mask)):
                current_object = value[0]
                break

        gray_mask = np.array(mask)
        gray_mask  = gray_mask[:, :, 0]
        bin_mask = np.where(gray_mask > 200, True, False)
        print(f"SET MASK {bin_mask.shape}, unique {np.unique(bin_mask)}")

        _, common_mask = self.concatenate_masks([bin_mask], image)
        self.mask = [Image.fromarray(bin_mask)]
        res = self.show_mask(common_mask, image)
        self.concatenated_masks = res
        return res, current_object, True

    def detect(self, image: Image, prompt: str, is_segmmask: bool, 
               box_threshold: float, text_threshold: float):
        detections = self.grounding_dino_model.predict_with_classes(
            image=cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB),
            classes=[prompt],
            box_threshold=box_threshold,
            text_threshold=text_threshold,
        )

        detections.mask = self.segment(
            sam_predictor=self.sam_predictor,
            image=cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB),
            xyxy=detections.xyxy
        )

        if len(detections.mask) == 0:
            return np.array(image), Image.fromarray(np.zeros_like(np.array(image)))
        
        self.segmentation_mask = []
        for mask in detections.mask:    
            self.segmentation_mask.append(Image.fromarray(mask))

        if is_segmmask:
            image, common_mask = self.concatenate_masks(detections.mask, image)
        else:
            masks = []
            for mask in detections.mask:
                bbox_mask = self.get_bbox_mask(Image.fromarray(mask))
                masks.append(np.array(bbox_mask))
            image, common_mask = self.concatenate_masks(masks, image)

        return image, common_mask
    
    def concatenate_masks(self, masks: np.ndarray, image: Image) -> np.ndarray:
        self.mask = []
        random_color = False
        common_mask = np.zeros_like(image)
        for i, mask in enumerate(masks):
            if random_color:
                color = np.concatenate([np.random.random(3)], axis=0)
            else:
                color = np.array([30 / 255, 144 / 255, 255 / 255])
            
            self.mask.append(Image.fromarray(mask))
            common_mask[mask > 0] = color.reshape(1, 1, -1) * 255
            random_color = True
        
        common_mask = Image.fromarray(common_mask, mode="RGB")
        image = self.show_mask(common_mask, image, random_color)

        common_mask = np.where(np.array(common_mask) != 0, 255, 0).astype(np.uint8)
        return Image.fromarray(image), Image.fromarray(common_mask)
    
    def show_mask(self, mask: Image, image: Image, 
                  random_color: bool = False) -> np.ndarray:
        """Visualize a mask on top of an image.
        Args:
            mask (Image): A 2D array of shape (H, W, 3).
            image (Image): A 3D array of shape (H, W, 3).
            random_color (bool): Whether to use a random color for the mask.
        Returns:
            np.ndarray: A 3D array of shape (H, W, 3) with the mask
            visualized on top of the image.
        """
        mask, image = np.array(mask), np.array(image)
        target_size = (image.shape[1], image.shape[0])  # width, height
        mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST)
        image = cv2.addWeighted(image, 0.7, mask, 0.3, 0)
        return image

    
    def segment(self, sam_predictor: SamPredictor, image: np.ndarray, xyxy: np.ndarray) -> np.ndarray:
        sam_predictor.set_image(image)
        result_masks = []
        for box in xyxy:
            masks, scores, logits = sam_predictor.predict(
                box=box,
                multimask_output=True
            )
            index = np.argmax(scores)
            result_masks.append(masks[index])
        return np.array(result_masks)

    # @spaces.GPU(duration=120)
    def augment_image(self, image: Image, 
                      current_object: str, new_objects_list: str,
                      ddim_steps: int, guidance_scale: int, seed: int, return_prompt: str) -> tuple:
        
        if self.selected_mask:
            mask = self.selected_mask
        else:
            mask = self.mask[np.random.choice(len(self.mask))]

        new_objects_list = new_objects_list.split(", ")

        result, (prompt, _) = self.augmenter(
        image=image,
        mask=mask,
        current_object=current_object,
        new_objects_list=new_objects_list,
        ddim_steps=ddim_steps,
        guidance_scale=guidance_scale,
        seed=seed,
        return_prompt=return_prompt
        )

        # # for debug
        # result = mask
        # prompt = "just mask" 
        
        if not return_prompt:
            prompt = ""

        prompt_message = f"<div class=\"message\" style=\"text-align: center; \
                                font-size: 18px;\">Generated prompt: {prompt}</div>"
        return result, prompt_message
    
    
if __name__ == "__main__":
    window = GradioWindow()
    window.demo.launch(share=False)
    window.demo.close()