File size: 15,512 Bytes
293785c 53ccd2b 293785c d968579 293785c 77f5007 293785c 53ccd2b 77f5007 09e25af 53ccd2b 77f5007 53ccd2b c99b3ce 09e25af 53ccd2b 263dd71 fd7ecc6 53ccd2b 293785c 53ccd2b 7a5d391 53ccd2b 9cc52c4 53ccd2b c99b3ce 263dd71 53ccd2b 40814e0 53ccd2b 955b30c 53ccd2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import os
import cv2
import time
import torch
import spaces
import subprocess
import numpy as np
import gradio as gr
import urllib.request
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt
from Garage.models.GroundedSegmentAnything.segment_anything.segment_anything import SamPredictor, build_sam, sam_model_registry
from Garage.models.GroundedSegmentAnything.GroundingDINO.groundingdino.util.inference import Model
from Garage import Augmenter
MODEL_DICT = dict(
vit_h="https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", # yapf: disable # noqa
vit_l="https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", # yapf: disable # noqa
vit_b="https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth", # yapf: disable # noqa
)
GROUNDING_DINO_CONFIG_PATH = "Garage/models/GroundedSegmentAnything/GroundingDINO_SwinT_OGC.py"
GROUNDING_DINO_CHECKPOINT_PATH = "https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth"
SAM_CHECKPOINT_PATH = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
SAM_ENCODER_VERSION = "vit_h"
class GradioWindow():
def __init__(self) -> None:
self.points = []
self.mask = []
self.selected_mask = None
self.segmentation_mask = []
self.concatenated_masks = None
self.examples_masks = {
0: ["dog", "examples/dog_mask.jpg"],
1: ["bread", "examples/bread_mask.jpg"],
2: ["room", "examples/room_mask.jpg"],
3: ["spoon", "examples/spoon_mask.jpg"],
4: ["cat", "examples/image_mask.jpg"],
}
self.GROUNDING_DINO_CONFIG_PATH = GROUNDING_DINO_CONFIG_PATH
self.GROUNDING_DINO_CHECKPOINT_PATH = GROUNDING_DINO_CHECKPOINT_PATH
self.model_type = SAM_ENCODER_VERSION
self.SAM_CHECKPOINT_PATH = SAM_CHECKPOINT_PATH
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.device = "cpu"
# for debug
# self.augmenter = None
self.augmenter = Augmenter(device=self.device)
self.setup_model()
self.main()
def main(self):
with gr.Blocks() as self.demo:
with gr.Row():
input_img = gr.Image(type="pil", label="Input image", interactive=True)
selected_mask = gr.Image(type="pil", label="Selected Mask", interactive=True)
segmented_img = gr.Image(type="pil", label="Selected Segment")
with gr.Row():
with gr.Group():
gr.Markdown(
"## Grounded Segmentation\n"
"#### This tool segments the object in the image based on the text prompt via GroundedSAM model. "
"You can also load the mask of the object to segment or choose one of the examples below.\n"
)
self.current_object = gr.Textbox(label="Current object")
with gr.Accordion("Advanced options", open=False):
self.use_mask = gr.Checkbox(label="Use segmentation mask", value=False)
box_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.25, label="Box threshold")
text_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.25, label="Text threshold")
segment_object = gr.Button("Segment object")
with gr.Column():
gr.Examples(
label="Images Examples",
examples=[
["examples/dog.jpg"],
["examples/bread.png"],
["examples/room.jpg"],
["examples/spoon.png"],
["examples/image.jpg"],
],
inputs=[input_img],
examples_per_page=5
)
gr.Examples(
label="Mask Examples",
examples=[
[self.examples_masks[0][1]],
[self.examples_masks[1][1]],
[self.examples_masks[2][1]],
[self.examples_masks[3][1]],
[self.examples_masks[4][1]],
],
inputs=[selected_mask, input_img],
outputs=[segmented_img, self.current_object, self.use_mask],
fn=self.set_mask,
run_on_click=True
)
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown(
"## Augmentation\n"
"#### This tool generates an augmented image based on the input image, the object to augment, and the target object. "
"If you don't specify the target object, the model will generate a random object. "
"You can also specify the number of steps, guidance scale, and seed for the generation process.\n"
)
self.target_object = gr.Textbox(label="Target object")
with gr.Accordion("Generation options", open=False):
self.iter_number = gr.Number(value=50, label="Steps")
self.guidance_scale = gr.Number(value=5, label="Guidance Scale")
self.seed = gr.Number(value=1, label="Seed")
self.return_prompt = gr.Checkbox(value=True, label="Show generated prompt")
enter_prompt = gr.Button("Augment Image")
with gr.Column():
augmented_img = gr.Image(type="pil", label="Augmented Image")
generated_prompt = gr.Markdown(
f"<div class=\"message\" style=\"text-align: center; \
font-size: 18px;\"></div>",
visible=True)
# Connect the UI and logic
selected_mask.upload(
self.set_mask,
inputs=[selected_mask, input_img],
outputs=[segmented_img, self.current_object, self.use_mask],
)
segment_object.click(
self.detect,
inputs=[input_img, self.current_object,
self.use_mask, box_threshold,
text_threshold],
outputs=[segmented_img, selected_mask]
)
self.use_mask.change(
fn=self.change_mask_type,
inputs=[input_img, self.use_mask],
outputs=[selected_mask, segmented_img],
)
segmented_img.select(
self.select_mask,
inputs=[input_img],
outputs=[selected_mask, segmented_img],
)
enter_prompt.click(
self.augment_image,
inputs=[input_img, self.current_object, self.target_object,
self.iter_number, self.guidance_scale, self.seed, self.return_prompt],
outputs=[augmented_img, generated_prompt],
)
def setup_model(self) -> SamPredictor:
self.sam = sam_model_registry["vit_h"]()
self.sam.load_state_dict(torch.utils.model_zoo.load_url(MODEL_DICT["vit_h"]))
self.sam.to(device=self.device)
self.sam_predictor = SamPredictor(self.sam)
self.grounding_dino_model = Model(
model_config_path=self.GROUNDING_DINO_CONFIG_PATH,
model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH,
device=self.device
)
print("MODELS LOADED! Device:", self.device)
def change_mask_type(self, image, is_segmmask):
self.selected_mask = None
masks = []
self.mask = []
if is_segmmask:
for segm_mask in self.segmentation_mask:
gray_mask = np.array(segm_mask)
if gray_mask.ndim == 3:
gray_mask = gray_mask[:, :, 0]
gray_mask = np.where(gray_mask > 200, True, False)
masks.append(gray_mask)
self.mask.append(Image.fromarray(gray_mask))
res, common_mask = self.concatenate_masks(masks, image)
else:
for segm_mask in self.segmentation_mask:
mask = self.get_bbox_mask(segm_mask)
gray_mask = np.array(mask)
masks.append(gray_mask)
self.mask.append(Image.fromarray(gray_mask))
res, common_mask = self.concatenate_masks(masks, image)
return common_mask, res
def get_bbox_mask(self, mask):
bbox = mask.getbbox()
new_mask = Image.new("L", mask.size, 0) # Start with an all-black mask
draw = ImageDraw.Draw(new_mask)
if bbox:
draw.rectangle(bbox, fill=255)
return new_mask
def select_mask(self, image: Image, evt: gr.SelectData):
self.points = [evt.index[0], evt.index[1]]
selected_mask = np.zeros_like(image)
self.selected_mask = None
for mask in self.mask:
mask = np.array(mask)
plt.imshow(mask)
plt.show()
print(f"SELECT MASK {mask.shape}, unique {np.unique(mask)}")
if mask[self.points[1]][self.points[0]]:
self.selected_mask = Image.fromarray(mask)
color = np.array([30 / 255, 144 / 255, 255 / 255])
selected_mask[mask > 0] = color.reshape(1, 1, -1) * 255
selected_mask = Image.fromarray(selected_mask, mode="RGB")
break
res = self.show_mask(selected_mask, image)
self.concatenated_masks = res
return self.selected_mask, res
def set_mask(self, mask: Image, image: Image):
self.selected_mask = mask
self.segmentation_mask = [mask]
current_object = None
for key, value in self.examples_masks.items():
m = Image.open(value[1])
if np.array_equal(np.array(m), np.array(mask)):
current_object = value[0]
break
gray_mask = np.array(mask)
gray_mask = gray_mask[:, :, 0]
bin_mask = np.where(gray_mask > 200, True, False)
print(f"SET MASK {bin_mask.shape}, unique {np.unique(bin_mask)}")
_, common_mask = self.concatenate_masks([bin_mask], image)
self.mask = [Image.fromarray(bin_mask)]
res = self.show_mask(common_mask, image)
self.concatenated_masks = res
return res, current_object, True
def detect(self, image: Image, prompt: str, is_segmmask: bool,
box_threshold: float, text_threshold: float):
detections = self.grounding_dino_model.predict_with_classes(
image=cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB),
classes=[prompt],
box_threshold=box_threshold,
text_threshold=text_threshold,
)
detections.mask = self.segment(
sam_predictor=self.sam_predictor,
image=cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB),
xyxy=detections.xyxy
)
if len(detections.mask) == 0:
return np.array(image), Image.fromarray(np.zeros_like(np.array(image)))
self.segmentation_mask = []
for mask in detections.mask:
self.segmentation_mask.append(Image.fromarray(mask))
if is_segmmask:
image, common_mask = self.concatenate_masks(detections.mask, image)
else:
masks = []
for mask in detections.mask:
bbox_mask = self.get_bbox_mask(Image.fromarray(mask))
masks.append(np.array(bbox_mask))
image, common_mask = self.concatenate_masks(masks, image)
return image, common_mask
def concatenate_masks(self, masks: np.ndarray, image: Image) -> np.ndarray:
self.mask = []
random_color = False
common_mask = np.zeros_like(image)
for i, mask in enumerate(masks):
if random_color:
color = np.concatenate([np.random.random(3)], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255])
self.mask.append(Image.fromarray(mask))
common_mask[mask > 0] = color.reshape(1, 1, -1) * 255
random_color = True
common_mask = Image.fromarray(common_mask, mode="RGB")
image = self.show_mask(common_mask, image, random_color)
common_mask = np.where(np.array(common_mask) != 0, 255, 0).astype(np.uint8)
return Image.fromarray(image), Image.fromarray(common_mask)
def show_mask(self, mask: Image, image: Image,
random_color: bool = False) -> np.ndarray:
"""Visualize a mask on top of an image.
Args:
mask (Image): A 2D array of shape (H, W, 3).
image (Image): A 3D array of shape (H, W, 3).
random_color (bool): Whether to use a random color for the mask.
Returns:
np.ndarray: A 3D array of shape (H, W, 3) with the mask
visualized on top of the image.
"""
mask, image = np.array(mask), np.array(image)
target_size = (image.shape[1], image.shape[0]) # width, height
mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST)
image = cv2.addWeighted(image, 0.7, mask, 0.3, 0)
return image
def segment(self, sam_predictor: SamPredictor, image: np.ndarray, xyxy: np.ndarray) -> np.ndarray:
sam_predictor.set_image(image)
result_masks = []
for box in xyxy:
masks, scores, logits = sam_predictor.predict(
box=box,
multimask_output=True
)
index = np.argmax(scores)
result_masks.append(masks[index])
return np.array(result_masks)
# @spaces.GPU(duration=120)
def augment_image(self, image: Image,
current_object: str, new_objects_list: str,
ddim_steps: int, guidance_scale: int, seed: int, return_prompt: str) -> tuple:
if self.selected_mask:
mask = self.selected_mask
else:
mask = self.mask[np.random.choice(len(self.mask))]
new_objects_list = new_objects_list.split(", ")
result, (prompt, _) = self.augmenter(
image=image,
mask=mask,
current_object=current_object,
new_objects_list=new_objects_list,
ddim_steps=ddim_steps,
guidance_scale=guidance_scale,
seed=seed,
return_prompt=return_prompt
)
# # for debug
# result = mask
# prompt = "just mask"
if not return_prompt:
prompt = ""
prompt_message = f"<div class=\"message\" style=\"text-align: center; \
font-size: 18px;\">Generated prompt: {prompt}</div>"
return result, prompt_message
if __name__ == "__main__":
window = GradioWindow()
window.demo.launch(share=False)
window.demo.close() |