import os import cv2 import time import torch import spaces import subprocess import numpy as np import gradio as gr import urllib.request from PIL import Image, ImageDraw import matplotlib.pyplot as plt from Garage.models.GroundedSegmentAnything.segment_anything.segment_anything import SamPredictor, build_sam, sam_model_registry from Garage.models.GroundedSegmentAnything.GroundingDINO.groundingdino.util.inference import Model from Garage import Augmenter MODEL_DICT = dict( vit_h="https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", # yapf: disable # noqa vit_l="https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", # yapf: disable # noqa vit_b="https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth", # yapf: disable # noqa ) GROUNDING_DINO_CONFIG_PATH = "Garage/models/GroundedSegmentAnything/GroundingDINO_SwinT_OGC.py" GROUNDING_DINO_CHECKPOINT_PATH = "https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth" SAM_CHECKPOINT_PATH = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" SAM_ENCODER_VERSION = "vit_h" class GradioWindow(): def __init__(self) -> None: self.points = [] self.mask = [] self.selected_mask = None self.segmentation_mask = [] self.concatenated_masks = None self.examples_masks = { 0: ["dog", "examples/dog_mask.jpg"], 1: ["bread", "examples/bread_mask.jpg"], 2: ["room", "examples/room_mask.jpg"], 3: ["spoon", "examples/spoon_mask.jpg"], 4: ["cat", "examples/image_mask.jpg"], } self.GROUNDING_DINO_CONFIG_PATH = GROUNDING_DINO_CONFIG_PATH self.GROUNDING_DINO_CHECKPOINT_PATH = GROUNDING_DINO_CHECKPOINT_PATH self.model_type = SAM_ENCODER_VERSION self.SAM_CHECKPOINT_PATH = SAM_CHECKPOINT_PATH # self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.device = "cpu" # for debug # self.augmenter = None self.augmenter = Augmenter(device=self.device) self.setup_model() self.main() def main(self): with gr.Blocks() as self.demo: with gr.Row(): input_img = gr.Image(type="pil", label="Input image", interactive=True) selected_mask = gr.Image(type="pil", label="Selected Mask", interactive=True) segmented_img = gr.Image(type="pil", label="Selected Segment") with gr.Row(): with gr.Group(): gr.Markdown( "## Grounded Segmentation\n" "#### This tool segments the object in the image based on the text prompt via GroundedSAM model. " "You can also load the mask of the object to segment or choose one of the examples below.\n" ) self.current_object = gr.Textbox(label="Current object") with gr.Accordion("Advanced options", open=False): self.use_mask = gr.Checkbox(label="Use segmentation mask", value=False) box_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.25, label="Box threshold") text_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.25, label="Text threshold") segment_object = gr.Button("Segment object") with gr.Column(): gr.Examples( label="Images Examples", examples=[ ["examples/dog.jpg"], ["examples/bread.png"], ["examples/room.jpg"], ["examples/spoon.png"], ["examples/image.jpg"], ], inputs=[input_img], examples_per_page=5 ) gr.Examples( label="Mask Examples", examples=[ [self.examples_masks[0][1]], [self.examples_masks[1][1]], [self.examples_masks[2][1]], [self.examples_masks[3][1]], [self.examples_masks[4][1]], ], inputs=[selected_mask, input_img], outputs=[segmented_img, self.current_object, self.use_mask], fn=self.set_mask, run_on_click=True ) with gr.Row(): with gr.Column(): with gr.Group(): gr.Markdown( "## Augmentation\n" "#### This tool generates an augmented image based on the input image, the object to augment, and the target object. " "If you don't specify the target object, the model will generate a random object. " "You can also specify the number of steps, guidance scale, and seed for the generation process.\n" ) self.target_object = gr.Textbox(label="Target object") with gr.Accordion("Generation options", open=False): self.iter_number = gr.Number(value=50, label="Steps") self.guidance_scale = gr.Number(value=5, label="Guidance Scale") self.seed = gr.Number(value=1, label="Seed") self.return_prompt = gr.Checkbox(value=True, label="Show generated prompt") enter_prompt = gr.Button("Augment Image") with gr.Column(): augmented_img = gr.Image(type="pil", label="Augmented Image") generated_prompt = gr.Markdown( f"
", visible=True) # Connect the UI and logic selected_mask.upload( self.set_mask, inputs=[selected_mask, input_img], outputs=[segmented_img, self.current_object, self.use_mask], ) segment_object.click( self.detect, inputs=[input_img, self.current_object, self.use_mask, box_threshold, text_threshold], outputs=[segmented_img, selected_mask] ) self.use_mask.change( fn=self.change_mask_type, inputs=[input_img, self.use_mask], outputs=[selected_mask, segmented_img], ) segmented_img.select( self.select_mask, inputs=[input_img], outputs=[selected_mask, segmented_img], ) enter_prompt.click( self.augment_image, inputs=[input_img, self.current_object, self.target_object, self.iter_number, self.guidance_scale, self.seed, self.return_prompt], outputs=[augmented_img, generated_prompt], ) def setup_model(self) -> SamPredictor: self.sam = sam_model_registry["vit_h"]() self.sam.load_state_dict(torch.utils.model_zoo.load_url(MODEL_DICT["vit_h"])) self.sam.to(device=self.device) self.sam_predictor = SamPredictor(self.sam) self.grounding_dino_model = Model( model_config_path=self.GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device=self.device ) print("MODELS LOADED! Device:", self.device) def change_mask_type(self, image, is_segmmask): self.selected_mask = None masks = [] self.mask = [] if is_segmmask: for segm_mask in self.segmentation_mask: gray_mask = np.array(segm_mask) if gray_mask.ndim == 3: gray_mask = gray_mask[:, :, 0] gray_mask = np.where(gray_mask > 200, True, False) masks.append(gray_mask) self.mask.append(Image.fromarray(gray_mask)) res, common_mask = self.concatenate_masks(masks, image) else: for segm_mask in self.segmentation_mask: mask = self.get_bbox_mask(segm_mask) gray_mask = np.array(mask) masks.append(gray_mask) self.mask.append(Image.fromarray(gray_mask)) res, common_mask = self.concatenate_masks(masks, image) return common_mask, res def get_bbox_mask(self, mask): bbox = mask.getbbox() new_mask = Image.new("L", mask.size, 0) # Start with an all-black mask draw = ImageDraw.Draw(new_mask) if bbox: draw.rectangle(bbox, fill=255) return new_mask def select_mask(self, image: Image, evt: gr.SelectData): self.points = [evt.index[0], evt.index[1]] selected_mask = np.zeros_like(image) self.selected_mask = None for mask in self.mask: mask = np.array(mask) plt.imshow(mask) plt.show() print(f"SELECT MASK {mask.shape}, unique {np.unique(mask)}") if mask[self.points[1]][self.points[0]]: self.selected_mask = Image.fromarray(mask) color = np.array([30 / 255, 144 / 255, 255 / 255]) selected_mask[mask > 0] = color.reshape(1, 1, -1) * 255 selected_mask = Image.fromarray(selected_mask, mode="RGB") break res = self.show_mask(selected_mask, image) self.concatenated_masks = res return self.selected_mask, res def set_mask(self, mask: Image, image: Image): self.selected_mask = mask self.segmentation_mask = [mask] current_object = None for key, value in self.examples_masks.items(): m = Image.open(value[1]) if np.array_equal(np.array(m), np.array(mask)): current_object = value[0] break gray_mask = np.array(mask) gray_mask = gray_mask[:, :, 0] bin_mask = np.where(gray_mask > 200, True, False) print(f"SET MASK {bin_mask.shape}, unique {np.unique(bin_mask)}") _, common_mask = self.concatenate_masks([bin_mask], image) self.mask = [Image.fromarray(bin_mask)] res = self.show_mask(common_mask, image) self.concatenated_masks = res return res, current_object, True def detect(self, image: Image, prompt: str, is_segmmask: bool, box_threshold: float, text_threshold: float): detections = self.grounding_dino_model.predict_with_classes( image=cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB), classes=[prompt], box_threshold=box_threshold, text_threshold=text_threshold, ) detections.mask = self.segment( sam_predictor=self.sam_predictor, image=cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB), xyxy=detections.xyxy ) if len(detections.mask) == 0: return np.array(image), Image.fromarray(np.zeros_like(np.array(image))) self.segmentation_mask = [] for mask in detections.mask: self.segmentation_mask.append(Image.fromarray(mask)) if is_segmmask: image, common_mask = self.concatenate_masks(detections.mask, image) else: masks = [] for mask in detections.mask: bbox_mask = self.get_bbox_mask(Image.fromarray(mask)) masks.append(np.array(bbox_mask)) image, common_mask = self.concatenate_masks(masks, image) return image, common_mask def concatenate_masks(self, masks: np.ndarray, image: Image) -> np.ndarray: self.mask = [] random_color = False common_mask = np.zeros_like(image) for i, mask in enumerate(masks): if random_color: color = np.concatenate([np.random.random(3)], axis=0) else: color = np.array([30 / 255, 144 / 255, 255 / 255]) self.mask.append(Image.fromarray(mask)) common_mask[mask > 0] = color.reshape(1, 1, -1) * 255 random_color = True common_mask = Image.fromarray(common_mask, mode="RGB") image = self.show_mask(common_mask, image, random_color) common_mask = np.where(np.array(common_mask) != 0, 255, 0).astype(np.uint8) return Image.fromarray(image), Image.fromarray(common_mask) def show_mask(self, mask: Image, image: Image, random_color: bool = False) -> np.ndarray: """Visualize a mask on top of an image. Args: mask (Image): A 2D array of shape (H, W, 3). image (Image): A 3D array of shape (H, W, 3). random_color (bool): Whether to use a random color for the mask. Returns: np.ndarray: A 3D array of shape (H, W, 3) with the mask visualized on top of the image. """ mask, image = np.array(mask), np.array(image) target_size = (image.shape[1], image.shape[0]) # width, height mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST) image = cv2.addWeighted(image, 0.7, mask, 0.3, 0) return image def segment(self, sam_predictor: SamPredictor, image: np.ndarray, xyxy: np.ndarray) -> np.ndarray: sam_predictor.set_image(image) result_masks = [] for box in xyxy: masks, scores, logits = sam_predictor.predict( box=box, multimask_output=True ) index = np.argmax(scores) result_masks.append(masks[index]) return np.array(result_masks) # @spaces.GPU(duration=120) def augment_image(self, image: Image, current_object: str, new_objects_list: str, ddim_steps: int, guidance_scale: int, seed: int, return_prompt: str) -> tuple: if self.selected_mask: mask = self.selected_mask else: mask = self.mask[np.random.choice(len(self.mask))] new_objects_list = new_objects_list.split(", ") result, (prompt, _) = self.augmenter( image=image, mask=mask, current_object=current_object, new_objects_list=new_objects_list, ddim_steps=ddim_steps, guidance_scale=guidance_scale, seed=seed, return_prompt=return_prompt ) # # for debug # result = mask # prompt = "just mask" if not return_prompt: prompt = "" prompt_message = f"
Generated prompt: {prompt}
" return result, prompt_message if __name__ == "__main__": window = GradioWindow() window.demo.launch(share=False) window.demo.close()