riffusion-demo / app.py
anzorq's picture
app v2
3df612c
raw
history blame
10.8 kB
from diffusers import StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline
import torch
from PIL import Image, ImageDraw
import os
import numpy as np
from scipy.io.wavfile import read
import gradio as gr
os.system('git clone https://github.com/hmartiro/riffusion-inference.git riffusion')
from riffusion.riffusion.riffusion_pipeline import RiffusionPipeline
from riffusion.riffusion.datatypes import PromptInput, InferenceInput
from riffusion.riffusion.audio import wav_bytes_from_spectrogram_image
from PIL import Image
import struct
import random
repo_id = "riffusion/riffusion-model-v1"
model = RiffusionPipeline.from_pretrained(
repo_id,
revision="main",
torch_dtype=torch.float16,
safety_checker=lambda images, **kwargs: (images, False),
)
if torch.cuda.is_available():
model.to("cuda")
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, safety_checker=lambda images, **kwargs: (images, False),)
pipe_inpaint.scheduler = DPMSolverMultistepScheduler.from_config(pipe_inpaint.scheduler.config)
# pipe_inpaint.enable_xformers_memory_efficient_attention()
if torch.cuda.is_available():
pipe_inpaint = pipe_inpaint.to("cuda")
def get_init_image(image, overlap, feel):
width, height = image.size
init_image = Image.open(f"riffusion/seed_images/{feel}.png").convert("RGB")
# Crop the right side of the original image with `overlap_width`
cropped_img = image.crop((width - int(width*overlap), 0, width, height))
init_image.paste(cropped_img, (0, 0))
return init_image
def get_mask(image, overlap):
width, height = image.size
mask = Image.new("RGB", (width, height), color="white")
draw = ImageDraw.Draw(mask)
draw.rectangle((0, 0, int(overlap * width), height), fill="black")
return mask
def i2i(prompt, steps, feel, seed):
# return pipe_i2i(
# prompt,
# num_inference_steps=steps,
# image=Image.open(f"riffusion/seed_images/{feel}.png").convert("RGB"),
# ).images[0]
prompt_input_start = PromptInput(prompt=prompt, seed=seed)
prompt_input_end = PromptInput(prompt=prompt, seed=seed)
return model.riffuse(
inputs=InferenceInput(
start=prompt_input_start,
end=prompt_input_end,
alpha=1.0,
num_inference_steps=steps),
init_image=Image.open(f"riffusion/seed_images/{feel}.png").convert("RGB")
)
def outpaint(prompt, init_image, mask, steps):
return pipe_inpaint(
prompt,
num_inference_steps=steps,
image=init_image,
mask_image=mask,
).images[0]
def generate(prompt, steps, num_iterations, feel, seed):
if seed == 0:
seed = random.randint(0,4294967295)
num_images = num_iterations
overlap = 0.5
image_width, image_height = 512, 512 # dimensions of each output image
total_width = num_images * image_width - (num_images - 1) * int(overlap * image_width) # total width of the stitched image
# Create a blank image with the desired dimensions
stitched_image = Image.new("RGB", (total_width, image_height), color="white")
# Initialize the x position for pasting the next image
x_pos = 0
image = i2i(prompt, steps, feel, seed)
for i in range(num_images):
# Generate the prompt, initial image, and mask for this iteration
init_image = get_init_image(image, overlap, feel)
mask = get_mask(init_image, overlap)
# Run the outpaint function to generate the output image
steps = 25
image = outpaint(prompt, init_image, mask, steps)
# Paste the output image onto the stitched image
stitched_image.paste(image, (x_pos, 0))
# Update the x position for the next iteration
x_pos += int((1 - overlap) * image_width)
wav_bytes, duration_s = wav_bytes_from_spectrogram_image(stitched_image)
mask = Image.new("RGB", (512, 512), color="white")
bg_image = outpaint(prompt, init_image, mask, steps)
bg_image.save("bg_image.png")
# return read(wav_bytes)
with open("output.wav", "wb") as f:
f.write(wav_bytes.read())
return gr.make_waveform("output.wav", bg_image="bg_image.png", bar_count=int(duration_s*25))
###############################################
def riffuse(steps, feel, init_image, prompt_start, seed_start, denoising_start=0.75, guidance_start=7.0, prompt_end=None, seed_end=None, denoising_end=0.75, guidance_end=7.0, alpha=0.5):
prompt_input_start = PromptInput(prompt=prompt_start, seed=seed_start, denoising=denoising_start, guidance=guidance_start)
prompt_input_end = PromptInput(prompt=prompt_end, seed=seed_end, denoising=denoising_end, guidance=guidance_end)
input = InferenceInput(
start=prompt_input_start,
end=prompt_input_end,
alpha=alpha,
num_inference_steps=steps,
seed_image_id=feel,
# mask_image_id="mask_beat_lines_80.png"
)
image = model.riffuse(inputs=input, init_image=init_image)
wav_bytes, duration_s = wav_bytes_from_spectrogram_image(image)
return wav_bytes, image
def generate_riffuse(prompt_start, steps, num_iterations, feel, prompt_end=None, seed_start=None, seed_end=None, denoising_start=0.75, denoising_end=0.75, guidance_start=7.0, guidance_end=7.0):
"""Generate a WAV file of length seconds using the Riffusion model.
Args:
length (int): Length of the WAV file in seconds, must be divisible by 5.
prompt_start (str): Prompt to start with.
prompt_end (str, optional): Prompt to end with. Defaults to prompt_start.
overlap (float, optional): Overlap between audio clips as a fraction of the image size. Defaults to 0.2.
"""
# open the initial image and convert it to RGB
init_image = Image.open(f"riffusion/seed_images/{feel}.png").convert("RGB")
if prompt_end is None:
prompt_end = prompt_start
if seed_start is None:
seed_start = random.randint(0,4294967295)
if seed_end is None:
seed_end = seed_start
# one riffuse() generates 5 seconds of audio
wav_list = []
for i in range(int(num_iterations)):
alpha = i / (num_iterations - 1)
print(alpha)
wav_bytes, image = riffuse(steps, feel, init_image, prompt_start, seed_start, denoising_start, guidance_start, prompt_end, seed_end, denoising_end, guidance_end, alpha=alpha)
wav_list.append(wav_bytes)
init_image = image
seed_start = seed_end
seed_end = seed_start + 1
# return read(wav_bytes)
mask = Image.new("RGB", (512, 512), color="white")
bg_image = outpaint(f"{prompt_start} and {prompt_end}", init_image, mask, steps)
bg_image.save("bg_image.png")
with open("output.wav", "wb") as f:
f.write(wav_bytes.read())
return gr.make_waveform("output.wav", bg_image="bg_image.png")
def wav_list_to_wav(wav_list):
# remove headers from the WAV files
data = [wav.read()[44:] for wav in wav_list]
# concatenate the data
concatenated_data = b"".join(data)
# create a new RIFF header
channels = 1
sample_rate = 44100
bytes_per_second = channels * sample_rate
new_header = struct.pack("<4sI4s4sIHHIIHH4sI", b"RIFF", len(concatenated_data) + 44 - 8, b"WAVE", b"fmt ", 16, 1, channels, sample_rate, bytes_per_second, 2, 16, b"data", len(concatenated_data))
# combine the header and data to create the final WAV file
final_wav = new_header + concatenated_data
return final_wav
###############################################
def on_submit(prompt_1, prompt_2, steps, num_iterations, feel, seed):
if prompt_1 == "":
return None, gr.update(value="First prompt is required.")
if prompt_2 == "":
return generate(prompt_1, steps, num_iterations, feel, seed), None
else:
return generate_riffuse(prompt_1, steps, num_iterations, feel, prompt_end=prompt_2, seed_start=seed), None
def on_num_iterations_change(n, prompt_2):
if n is None:
return gr.update(value="")
x = 5 if prompt_2 != "" else 2.5
total_length = x + x * n
return gr.update(value=f"Total length: {total_length:.2f} seconds")
with gr.Blocks() as app:
gr.Markdown("## Riffusion")
gr.Markdown("""Generate audio using the [Riffusion](https://huggingface.co/riffusion/riffusion-model-v1) model.<br>
In single prompt mode you can generate up to ~1 minute of audio with smooth transitions between sections. (beta)<br>
Bi-prompt mode interpolates between two prompts. It can generate up to ~2 minutes of audio, but the transitions between sections are more abrupt.""")
with gr.Row():
with gr.Group():
with gr.Row():
prompt_1 = gr.Textbox(lines=1, label="Start from", placeholder="Starting prompt")
prompt_2 = gr.Textbox(lines=1, label="End with (optional)", placeholder="Prompt to shift towards at the end")
with gr.Row():
steps = gr.Slider(minimum=1, maximum=100, value=25, label="Steps per section")
num_iterations = gr.Slider(minimum=2, maximum=25, value=2, step=1, label="Number of sections")
with gr.Row():
feel = gr.Dropdown(["og_beat", "agile", "vibes", "motorway", "marim"], value="og_beat", label="Feel")
seed = gr.Slider(minimum=0, maximum=4294967295, value=0, step=1, label="Seed (0 for random)")
info = gr.Markdown()
btn_generate = gr.Button(value="Generate")
with gr.Column():
video = gr.Video()
inputs = [prompt_1, prompt_2, steps, num_iterations, feel, seed]
outputs = [video, info]
num_iterations.change(on_num_iterations_change, [num_iterations, prompt_2], [info])
prompt_1.submit(on_submit, inputs, outputs)
prompt_2.submit(on_submit, inputs, outputs)
btn_generate.click(on_submit, inputs, outputs)
examples = gr.Examples(
examples=[
["typing", "dance beat", "og_beat", 10],
["synthwave", "jazz", "agile", 10],
["rap battle freestyle", "", "og_beat", 10],
["techno club banger", "", "og_beat", 10],
["acoustic folk ballad", "", "agile", 10],
["blues guitar riff", "", "agile", 5],
["jazzy trumpet solo", "", "og_beat", 5],
["classical symphony orchestra", "", "vibes", 10],
["rock and roll power chord", "", "motorway", 5],
["soulful R&B love song", "", "marim", 10],
["reggae dub beat", "sunset chill", "og_beat", 10],
["country western twangy guitar", "", "agile", 10]],
inputs=[prompt_1, prompt_2, feel, num_iterations])
app.launch()