from diffusers import StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline import torch from PIL import Image, ImageDraw import os import numpy as np from scipy.io.wavfile import read import gradio as gr os.system('git clone https://github.com/hmartiro/riffusion-inference.git riffusion') from riffusion.riffusion.riffusion_pipeline import RiffusionPipeline from riffusion.riffusion.datatypes import PromptInput, InferenceInput from riffusion.riffusion.audio import wav_bytes_from_spectrogram_image from PIL import Image import struct import random repo_id = "riffusion/riffusion-model-v1" model = RiffusionPipeline.from_pretrained( repo_id, revision="main", torch_dtype=torch.float16, safety_checker=lambda images, **kwargs: (images, False), ) if torch.cuda.is_available(): model.to("cuda") pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, safety_checker=lambda images, **kwargs: (images, False),) pipe_inpaint.scheduler = DPMSolverMultistepScheduler.from_config(pipe_inpaint.scheduler.config) # pipe_inpaint.enable_xformers_memory_efficient_attention() if torch.cuda.is_available(): pipe_inpaint = pipe_inpaint.to("cuda") def get_init_image(image, overlap, feel): width, height = image.size init_image = Image.open(f"riffusion/seed_images/{feel}.png").convert("RGB") # Crop the right side of the original image with `overlap_width` cropped_img = image.crop((width - int(width*overlap), 0, width, height)) init_image.paste(cropped_img, (0, 0)) return init_image def get_mask(image, overlap): width, height = image.size mask = Image.new("RGB", (width, height), color="white") draw = ImageDraw.Draw(mask) draw.rectangle((0, 0, int(overlap * width), height), fill="black") return mask def i2i(prompt, steps, feel, seed): # return pipe_i2i( # prompt, # num_inference_steps=steps, # image=Image.open(f"riffusion/seed_images/{feel}.png").convert("RGB"), # ).images[0] prompt_input_start = PromptInput(prompt=prompt, seed=seed) prompt_input_end = PromptInput(prompt=prompt, seed=seed) return model.riffuse( inputs=InferenceInput( start=prompt_input_start, end=prompt_input_end, alpha=1.0, num_inference_steps=steps), init_image=Image.open(f"riffusion/seed_images/{feel}.png").convert("RGB") ) def outpaint(prompt, init_image, mask, steps): return pipe_inpaint( prompt, num_inference_steps=steps, image=init_image, mask_image=mask, ).images[0] def generate(prompt, steps, num_iterations, feel, seed): if seed == 0: seed = random.randint(0,4294967295) num_images = num_iterations overlap = 0.5 image_width, image_height = 512, 512 # dimensions of each output image total_width = num_images * image_width - (num_images - 1) * int(overlap * image_width) # total width of the stitched image # Create a blank image with the desired dimensions stitched_image = Image.new("RGB", (total_width, image_height), color="white") # Initialize the x position for pasting the next image x_pos = 0 image = i2i(prompt, steps, feel, seed) for i in range(num_images): # Generate the prompt, initial image, and mask for this iteration init_image = get_init_image(image, overlap, feel) mask = get_mask(init_image, overlap) # Run the outpaint function to generate the output image steps = 25 image = outpaint(prompt, init_image, mask, steps) # Paste the output image onto the stitched image stitched_image.paste(image, (x_pos, 0)) # Update the x position for the next iteration x_pos += int((1 - overlap) * image_width) wav_bytes, duration_s = wav_bytes_from_spectrogram_image(stitched_image) mask = Image.new("RGB", (512, 512), color="white") bg_image = outpaint(prompt, init_image, mask, steps) bg_image.save("bg_image.png") # return read(wav_bytes) with open("output.wav", "wb") as f: f.write(wav_bytes.read()) return gr.make_waveform("output.wav", bg_image="bg_image.png", bar_count=int(duration_s*25)) ############################################### def riffuse(steps, feel, init_image, prompt_start, seed_start, denoising_start=0.75, guidance_start=7.0, prompt_end=None, seed_end=None, denoising_end=0.75, guidance_end=7.0, alpha=0.5): prompt_input_start = PromptInput(prompt=prompt_start, seed=seed_start, denoising=denoising_start, guidance=guidance_start) prompt_input_end = PromptInput(prompt=prompt_end, seed=seed_end, denoising=denoising_end, guidance=guidance_end) input = InferenceInput( start=prompt_input_start, end=prompt_input_end, alpha=alpha, num_inference_steps=steps, seed_image_id=feel, # mask_image_id="mask_beat_lines_80.png" ) image = model.riffuse(inputs=input, init_image=init_image) wav_bytes, duration_s = wav_bytes_from_spectrogram_image(image) return wav_bytes, image def generate_riffuse(prompt_start, steps, num_iterations, feel, prompt_end=None, seed_start=None, seed_end=None, denoising_start=0.75, denoising_end=0.75, guidance_start=7.0, guidance_end=7.0): """Generate a WAV file of length seconds using the Riffusion model. Args: length (int): Length of the WAV file in seconds, must be divisible by 5. prompt_start (str): Prompt to start with. prompt_end (str, optional): Prompt to end with. Defaults to prompt_start. overlap (float, optional): Overlap between audio clips as a fraction of the image size. Defaults to 0.2. """ # open the initial image and convert it to RGB init_image = Image.open(f"riffusion/seed_images/{feel}.png").convert("RGB") if prompt_end is None: prompt_end = prompt_start if seed_start is None: seed_start = random.randint(0,4294967295) if seed_end is None: seed_end = seed_start # one riffuse() generates 5 seconds of audio wav_list = [] for i in range(int(num_iterations)): alpha = i / (num_iterations - 1) print(alpha) wav_bytes, image = riffuse(steps, feel, init_image, prompt_start, seed_start, denoising_start, guidance_start, prompt_end, seed_end, denoising_end, guidance_end, alpha=alpha) wav_list.append(wav_bytes) init_image = image seed_start = seed_end seed_end = seed_start + 1 # return read(wav_bytes) mask = Image.new("RGB", (512, 512), color="white") bg_image = outpaint(f"{prompt_start} and {prompt_end}", init_image, mask, steps) bg_image.save("bg_image.png") with open("output.wav", "wb") as f: f.write(wav_bytes.read()) return gr.make_waveform("output.wav", bg_image="bg_image.png") def wav_list_to_wav(wav_list): # remove headers from the WAV files data = [wav.read()[44:] for wav in wav_list] # concatenate the data concatenated_data = b"".join(data) # create a new RIFF header channels = 1 sample_rate = 44100 bytes_per_second = channels * sample_rate new_header = struct.pack("<4sI4s4sIHHIIHH4sI", b"RIFF", len(concatenated_data) + 44 - 8, b"WAVE", b"fmt ", 16, 1, channels, sample_rate, bytes_per_second, 2, 16, b"data", len(concatenated_data)) # combine the header and data to create the final WAV file final_wav = new_header + concatenated_data return final_wav ############################################### def on_submit(prompt_1, prompt_2, steps, num_iterations, feel, seed): if prompt_1 == "": return None, gr.update(value="First prompt is required.") if prompt_2 == "": return generate(prompt_1, steps, num_iterations, feel, seed), None else: return generate_riffuse(prompt_1, steps, num_iterations, feel, prompt_end=prompt_2, seed_start=seed), None def on_num_iterations_change(n, prompt_2): if n is None: return gr.update(value="") x = 5 if prompt_2 != "" else 2.5 total_length = x + x * n return gr.update(value=f"Total length: {total_length:.2f} seconds") with gr.Blocks() as app: gr.Markdown("## Riffusion") gr.Markdown("""Generate audio using the [Riffusion](https://huggingface.co/riffusion/riffusion-model-v1) model.
In single prompt mode you can generate up to ~1 minute of audio with smooth transitions between sections. (beta)
Bi-prompt mode interpolates between two prompts. It can generate up to ~2 minutes of audio, but the transitions between sections are more abrupt.""") with gr.Row(): with gr.Group(): with gr.Row(): prompt_1 = gr.Textbox(lines=1, label="Start from", placeholder="Starting prompt") prompt_2 = gr.Textbox(lines=1, label="End with (optional)", placeholder="Prompt to shift towards at the end") with gr.Row(): steps = gr.Slider(minimum=1, maximum=100, value=25, label="Steps per section") num_iterations = gr.Slider(minimum=2, maximum=25, value=2, step=1, label="Number of sections") with gr.Row(): feel = gr.Dropdown(["og_beat", "agile", "vibes", "motorway", "marim"], value="og_beat", label="Feel") seed = gr.Slider(minimum=0, maximum=4294967295, value=0, step=1, label="Seed (0 for random)") info = gr.Markdown() btn_generate = gr.Button(value="Generate") with gr.Column(): video = gr.Video() inputs = [prompt_1, prompt_2, steps, num_iterations, feel, seed] outputs = [video, info] num_iterations.change(on_num_iterations_change, [num_iterations, prompt_2], [info]) prompt_1.submit(on_submit, inputs, outputs) prompt_2.submit(on_submit, inputs, outputs) btn_generate.click(on_submit, inputs, outputs) examples = gr.Examples( examples=[ ["typing", "dance beat", "og_beat", 10], ["synthwave", "jazz", "agile", 10], ["rap battle freestyle", "", "og_beat", 10], ["techno club banger", "", "og_beat", 10], ["acoustic folk ballad", "", "agile", 10], ["blues guitar riff", "", "agile", 5], ["jazzy trumpet solo", "", "og_beat", 5], ["classical symphony orchestra", "", "vibes", 10], ["rock and roll power chord", "", "motorway", 5], ["soulful R&B love song", "", "marim", 10], ["reggae dub beat", "sunset chill", "og_beat", 10], ["country western twangy guitar", "", "agile", 10]], inputs=[prompt_1, prompt_2, feel, num_iterations]) app.launch()