Spaces:
Sleeping
Sleeping
File size: 1,197 Bytes
c4be697 2a26a73 ccd354a c4be697 e8f4525 d3ba574 91a2093 2a26a73 9ebac62 8d768b7 2a26a73 e8f4525 d3ba574 c4be697 67881e0 c4be697 9af1238 f092898 c4be697 f092898 91a2093 f092898 e777dab f092898 a6de600 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
from langchain import HuggingFaceHub, PromptTemplate, LLMChain
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
import gradio as gr
from getpass import getpass
import os
template = """Question: {question}
------------------
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["history"])
# Callbacks support token-wise streaming
callbacks = [StreamingStdOutCallbackHandler()]
# Instantiate the Hugging Face model
repo_id = "gpt2" # Replace with the desired model
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0, "max_length": 64})
# Initialize the chain
llm_chain = LLMChain(prompt=prompt, llm=llm)
# Define the Gradio interface
def chatbot_interface(input_text):
response = llm_chain.run(input_text)
return response
# Define the Gradio app
gradio_app = gr.Interface(
fn=chatbot_interface,
inputs=gr.inputs.Textbox(label="Say something..."),
outputs=gr.outputs.Textbox(),
title="ConversationChain Chatbot",
description="A chatbot interface powered by ConversationChain and Hugging Face.",
)
# Run the Gradio app
if __name__ == "__main__":
gradio_app.launch()
|