Spaces:
Sleeping
Sleeping
update
Browse files- .gitignore +1 -0
- app.py +6 -1
- myLLM.py +1 -0
.gitignore
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
.env
|
2 |
_app.py
|
3 |
models/ggml-gpt4all-l13b-snoozy.bin
|
|
|
|
1 |
.env
|
2 |
_app.py
|
3 |
models/ggml-gpt4all-l13b-snoozy.bin
|
4 |
+
myLLM.py
|
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from langchain import PromptTemplate, LLMChain
|
2 |
from langchain.llms import GPT4All
|
|
|
3 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import hf_hub_download
|
@@ -16,16 +17,20 @@ template = """Question: {question}
|
|
16 |
Answer: Let's think step by step."""
|
17 |
|
18 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
|
|
|
|
|
|
19 |
# Callbacks support token-wise streaming
|
20 |
callbacks = [StreamingStdOutCallbackHandler()]
|
21 |
# Verbose is required to pass to the callback manager
|
22 |
llm = GPT4All(model=model, callbacks=callbacks, verbose=True)
|
23 |
|
24 |
-
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
25 |
|
26 |
# Define the Gradio interface
|
27 |
def chatbot_interface(input_text):
|
28 |
response = llm_chain.run(input_text)
|
|
|
29 |
return response
|
30 |
|
31 |
# Define the Gradio app
|
|
|
1 |
from langchain import PromptTemplate, LLMChain
|
2 |
from langchain.llms import GPT4All
|
3 |
+
from langchain.memory import ConversationMemory
|
4 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
5 |
import gradio as gr
|
6 |
from huggingface_hub import hf_hub_download
|
|
|
17 |
Answer: Let's think step by step."""
|
18 |
|
19 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
20 |
+
|
21 |
+
# Create a memory module with a maximum capacity of 1000 items
|
22 |
+
memory = ConversationMemory(max_capacity=1000)
|
23 |
# Callbacks support token-wise streaming
|
24 |
callbacks = [StreamingStdOutCallbackHandler()]
|
25 |
# Verbose is required to pass to the callback manager
|
26 |
llm = GPT4All(model=model, callbacks=callbacks, verbose=True)
|
27 |
|
28 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm, memory=memory)
|
29 |
|
30 |
# Define the Gradio interface
|
31 |
def chatbot_interface(input_text):
|
32 |
response = llm_chain.run(input_text)
|
33 |
+
memory.store(llm_chain.last_input, llm_chain.last_output)
|
34 |
return response
|
35 |
|
36 |
# Define the Gradio app
|
myLLM.py
CHANGED
@@ -16,3 +16,4 @@ class AutoModelLanguageModel(LanguageModel):
|
|
16 |
output = self.model.generate(prompt, max_length=max_length, pad_token_id=self.tokenizer.pad_token_id)
|
17 |
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
18 |
return response
|
|
|
|
16 |
output = self.model.generate(prompt, max_length=max_length, pad_token_id=self.tokenizer.pad_token_id)
|
17 |
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
18 |
return response
|
19 |
+
|