kookoobau commited on
Commit
91a2093
1 Parent(s): 125ee59
Files changed (3) hide show
  1. .gitignore +2 -0
  2. app.py +11 -23
  3. models/ggml-gpt4all-l13b-snoozy.bin +0 -3
.gitignore CHANGED
@@ -1 +1,3 @@
 
 
1
  models/ggml-gpt4all-l13b-snoozy.bin
 
1
+ .env
2
+ _app.py
3
  models/ggml-gpt4all-l13b-snoozy.bin
app.py CHANGED
@@ -2,36 +2,24 @@ from langchain import PromptTemplate, LLMChain
2
  from langchain.llms import GPT4All
3
  from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
4
  import gradio as gr
5
- import requests
6
- from pathlib import Path
7
- from tqdm import tqdm
 
 
 
 
8
 
9
- template = """Question: {question}
10
 
 
 
11
  Answer: Let's think step by step."""
12
 
13
  prompt = PromptTemplate(template=template, input_variables=["question"])
14
-
15
- local_path = './models/ggml-gpt4all-l13b-snoozy.bin' # replace with your desired local file path
16
- Path(local_path).parent.mkdir(parents=True, exist_ok=True)
17
-
18
- # Example model. Check https://github.com/nomic-ai/pygpt4all for the latest models.
19
- url = 'http://gpt4all.io/models/ggml-gpt4all-l13b-snoozy.bin'
20
-
21
- # send a GET request to the URL to download the file. Stream since it's large
22
- response = requests.get(url, stream=True)
23
-
24
- # open the file in binary mode and write the contents of the response to it in chunks
25
- # This is a large file, so be prepared to wait.
26
- with open(local_path, 'wb') as f:
27
- for chunk in tqdm(response.iter_content(chunk_size=8192)):
28
- if chunk:
29
- f.write(chunk)
30
-
31
  # Callbacks support token-wise streaming
32
  callbacks = [StreamingStdOutCallbackHandler()]
33
  # Verbose is required to pass to the callback manager
34
- llm = GPT4All(model=local_path, callbacks=callbacks, verbose=True)
35
 
36
  llm_chain = LLMChain(prompt=prompt, llm=llm)
37
 
@@ -43,7 +31,7 @@ def chatbot_interface(input_text):
43
  # Define the Gradio app
44
  gradio_app = gr.Interface(
45
  fn=chatbot_interface,
46
- inputs=gr.inputs.Textbox(prompt="Say something..."),
47
  outputs=gr.outputs.Textbox(),
48
  title="ConversationChain Chatbot",
49
  description="A chatbot interface powered by ConversationChain and Hugging Face.",
 
2
  from langchain.llms import GPT4All
3
  from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
4
  import gradio as gr
5
+ from huggingface_hub import hf_hub_download
6
+ from transformers import AutoTokenizer, AutoModelForCausalLM
7
+
8
+ model_path = hf_hub_download(repo_id="microsoft/DialoGPT-medium", filename="tf_model.h5")
9
+ # Load the tokenizer and model
10
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
11
+ model = AutoModelForCausalLM.from_pretrained(model_path)
12
 
 
13
 
14
+ template = """Question: {question}
15
+ ------------------
16
  Answer: Let's think step by step."""
17
 
18
  prompt = PromptTemplate(template=template, input_variables=["question"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  # Callbacks support token-wise streaming
20
  callbacks = [StreamingStdOutCallbackHandler()]
21
  # Verbose is required to pass to the callback manager
22
+ llm = GPT4All(model=model, callbacks=callbacks, verbose=True)
23
 
24
  llm_chain = LLMChain(prompt=prompt, llm=llm)
25
 
 
31
  # Define the Gradio app
32
  gradio_app = gr.Interface(
33
  fn=chatbot_interface,
34
+ inputs=gr.inputs.Textbox(label="Say something..."),
35
  outputs=gr.outputs.Textbox(),
36
  title="ConversationChain Chatbot",
37
  description="A chatbot interface powered by ConversationChain and Hugging Face.",
models/ggml-gpt4all-l13b-snoozy.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a7237cc5ddb014293c485c9c5effa91684693ef230ec267b0b100bf699bc97a5
3
- size 184352768