from transformers import AutoTokenizer, AutoModelForCausalLM from langchain.chains import LanguageModel class AutoModelLanguageModel(LanguageModel): def __init__(self, model_name_or_path): self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) self.model = AutoModelForCausalLM.from_pretrained(model_name_or_path) def generate_prompt(self, input_text, history): inputs = self.tokenizer.encode(input_text + self.tokenizer.eos_token, return_tensors="pt") history = [self.tokenizer.encode(h + self.tokenizer.eos_token, return_tensors="pt") for h in history] prompt = torch.cat(history + [inputs], dim=-1) return prompt def generate_response(self, prompt, max_length): output = self.model.generate(prompt, max_length=max_length, pad_token_id=self.tokenizer.pad_token_id) response = self.tokenizer.decode(output[0], skip_special_tokens=True) return response