Spaces:
Running
Running
File size: 11,365 Bytes
536372f c7af9e1 645e61e 536372f c7af9e1 260e2b7 fe00658 423c35e fe00658 260e2b7 536372f c7af9e1 536372f c7af9e1 536372f 219ff73 5137e56 c7af9e1 5137e56 c7af9e1 5137e56 c7af9e1 5137e56 c7af9e1 87b29c9 5137e56 87b29c9 c7af9e1 87b29c9 c7af9e1 87b29c9 c7af9e1 645e61e 317197e 645e61e c7af9e1 536372f 423c35e 536372f 423c35e 536372f 29720b6 536372f c7af9e1 87b29c9 c7af9e1 536372f 260e2b7 ee80e0c c7af9e1 536372f c7af9e1 645e61e ee80e0c c7af9e1 ee80e0c c7af9e1 536372f 7cbeeaf c7af9e1 536372f 29720b6 536372f c7af9e1 7cbeeaf c7af9e1 645e61e c7af9e1 260e2b7 7cbeeaf 536372f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import gradio as gr
from transformers import AutoTokenizer, AutoModel
from openai import OpenAI
import os
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from docx import Document
import io
import tempfile
from astroquery.nasa_ads import ADS
import pyvo as vo
# Load the NASA-specific bi-encoder model and tokenizer
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name)
bi_model = AutoModel.from_pretrained(bi_encoder_model_name)
# Set up OpenAI client
api_key = os.getenv('OPENAI_API_KEY')
client = OpenAI(api_key=api_key)
# Set up NASA ADS token
ADS.TOKEN = os.getenv('ADS_API_KEY') # Ensure your ADS API key is stored in environment variables
# Define system message with instructions
system_message = """
You are ExosAI, a helpful assistant specializing in Exoplanet research.
Given the following scientific context and user input, generate a table with four columns:
1. Physical Processes: what physical processes are relevant.
2. Observables: what physical quantities to observe.
3. Technical Requirements: wavelength ranges, spatial resolution etc.
4. Relevant Scientific Goal: A scientific explanation of why these measurements are important.
The table should include specific **technical requirements**, focussing on **optical and infrared wavelengths**, or any other relevant constraints based on the context, and avoid naming specific telescopes or instruments.
The goal of the table is to summarize key scientific parameters, observables, technical needs, and goals related to the given context. Ensure the table is detailed and informative, and that it follows the format provided.
"""
def encode_text(text):
inputs = bi_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128)
outputs = bi_model(**inputs)
return outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten()
def retrieve_relevant_context(user_input, context_texts):
user_embedding = encode_text(user_input).reshape(1, -1)
context_embeddings = np.array([encode_text(text) for text in context_texts])
context_embeddings = context_embeddings.reshape(len(context_embeddings), -1)
similarities = cosine_similarity(user_embedding, context_embeddings).flatten()
most_relevant_idx = np.argmax(similarities)
return context_texts[most_relevant_idx]
def extract_keywords_with_gpt(user_input, max_tokens=100, temperature=0.3):
# Define a prompt to ask GPT-4 to extract keywords and important terms
keyword_prompt = f"Extract the most important keywords, scientific concepts, and parameters from the following user query:\n\n{user_input}"
# Call GPT-4 to extract keywords based on the user prompt
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert in identifying key scientific terms and concepts."},
{"role": "user", "content": keyword_prompt}
],
max_tokens=max_tokens,
temperature=temperature
)
# Extract the content from GPT-4's reply
extracted_keywords = response.choices[0].message.content.strip()
return extracted_keywords
def fetch_nasa_ads_references(prompt):
try:
# Use the entire prompt for the query
simplified_query = prompt
# Query NASA ADS for relevant papers
papers = ADS.query_simple(simplified_query)
if not papers or len(papers) == 0:
return [("No results found", "N/A", "N/A")]
# Include authors in the references
references = [
(
paper['title'][0],
", ".join(paper['author'][:3]) + (" et al." if len(paper['author']) > 3 else ""),
paper['bibcode']
)
for paper in papers[:5] # Limit to 5 references
]
return references
except Exception as e:
return [("Error fetching references", str(e), "N/A")]
def fetch_exoplanet_data():
# Connect to NASA Exoplanet Archive TAP Service
tap_service = vo.dal.TAPService("https://exoplanetarchive.ipac.caltech.edu/TAP")
# Query to fetch all columns from the pscomppars table
ex_query = """
SELECT TOP 10 pl_name, hostname, sy_snum, sy_pnum, discoverymethod, disc_year, disc_facility, pl_controv_flag, pl_orbper, pl_orbsmax, pl_rade, pl_bmasse, pl_orbeccen, pl_eqt, st_spectype, st_teff, st_rad, st_mass, ra, dec, sy_vmag
FROM pscomppars
"""
# Execute the query
qresult = tap_service.search(ex_query)
# Convert to a Pandas DataFrame
ptable = qresult.to_table()
exoplanet_data = ptable.to_pandas()
return exoplanet_data
def generate_response(user_input, relevant_context="", references=[], max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
if relevant_context:
combined_input = f"Scientific Context: {relevant_context}\nUser Input: {user_input}\nPlease generate a table with the format: | Physical Processes | Observables | Technical Requirements | Relevant Scientific Goal |"
else:
combined_input = f"User Input: {user_input}\nPlease generate a table with the format: | Physical Processes | Observables | Technical Requirements | Relevant Scientific Goal |"
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": combined_input}
],
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty
)
# Append references to the response
if references:
response_content = response.choices[0].message.content.strip()
references_text = "\n\nADS References:\n" + "\n".join(
[f"- {title} by {authors} (Bibcode: {bibcode})" for title, authors, bibcode in references]
)
return f"{response_content}\n{references_text}"
return response.choices[0].message.content.strip()
def generate_data_insights(user_input, exoplanet_data, max_tokens=500, temperature=0.3):
"""
Generate insights by passing the user's input along with the exoplanet data to GPT-4.
"""
# Convert the dataframe to a readable format for GPT (e.g., CSV-style text)
data_as_text = exoplanet_data.to_csv(index=False) # CSV-style for better readability
# Create a prompt with the user query and the data sample
insights_prompt = (
f"Analyze the following user query and provide relevant insights based on the provided exoplanet data.\n\n"
f"User Query: {user_input}\n\n"
f"Exoplanet Data:\n{data_as_text}\n\n"
f"Please provide insights that are relevant to the user's query."
)
# Call GPT-4 to generate insights based on the data and user input
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert in analyzing astronomical data and generating insights."},
{"role": "user", "content": insights_prompt}
],
max_tokens=max_tokens,
temperature=temperature
)
# Extract and return GPT-4's insights
data_insights = response.choices[0].message.content.strip()
return data_insights
def export_to_word(response_content):
doc = Document()
doc.add_heading('AI Generated SCDD', 0)
for line in response_content.split('\n'):
doc.add_paragraph(line)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".docx")
doc.save(temp_file.name)
return temp_file.name
def chatbot(user_input, context="", use_encoder=False, max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
if use_encoder and context:
context_texts = context.split("\n")
relevant_context = retrieve_relevant_context(user_input, context_texts)
else:
relevant_context = ""
# Fetch NASA ADS references using the full prompt
references = fetch_nasa_ads_references(user_input)
# Generate response from GPT-4
response = generate_response(user_input, relevant_context, references, max_tokens, temperature, top_p, frequency_penalty, presence_penalty)
# Export the response to a Word document
word_doc_path = export_to_word(response)
# Fetch exoplanet data
exoplanet_data = fetch_exoplanet_data()
# Generate insights based on the user query and exoplanet data
data_insights = generate_data_insights(user_input, exoplanet_data)
# Combine the response and the data insights
full_response = f"{response}\n\nInsights from Existing Data: {data_insights}"
# Embed Miro iframe
iframe_html = """
<iframe width="768" height="432" src="https://miro.com/app/live-embed/uXjVKuVTcF8=/?moveToViewport=-331,-462,5434,3063&embedId=710273023721" frameborder="0" scrolling="no" allow="fullscreen; clipboard-read; clipboard-write" allowfullscreen></iframe>
"""
mapify_button_html = """
<style>
.mapify-button {
background: linear-gradient(135deg, #1E90FF 0%, #87CEFA 100%);
border: none;
color: white;
padding: 15px 35px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
font-weight: bold;
margin: 20px 2px;
cursor: pointer;
border-radius: 25px;
transition: all 0.3s ease;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
.mapify-button:hover {
background: linear-gradient(135deg, #4682B4 0%, #1E90FF 100%);
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.3);
transform: scale(1.05);
}
</style>
<a href="https://mapify.so/app/new" target="_blank">
<button class="mapify-button">Create Mind Map on Mapify</button>
</a>
"""
return full_response, iframe_html, mapify_button_html, word_doc_path, exoplanet_data
iface = gr.Interface(
fn=chatbot,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your Science Goal here...", label="Prompt ExosAI"),
gr.Textbox(lines=5, placeholder="Enter some context here...", label="Context"),
gr.Checkbox(label="Use NASA SMD Bi-Encoder for Context"),
gr.Slider(50, 1000, value=150, step=10, label="Max Tokens"),
gr.Slider(0.0, 1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.0, 1.0, value=0.9, step=0.1, label="Top-p"),
gr.Slider(0.0, 1.0, value=0.5, step=0.1, label="Frequency Penalty"),
gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Presence Penalty")
],
outputs=[
gr.Textbox(label="ExosAI finds..."),
gr.HTML(label="Miro"),
gr.HTML(label="Generate Mind Map on Mapify"),
gr.File(label="Download SCDD", type="filepath"),
gr.Dataframe(label="Exoplanet Data Table")
],
title="ExosAI - NASA SMD SCDD AI Assistant [version-0.5a]",
description="ExosAI is an AI-powered assistant for generating and visualising HWO Science Cases",
)
iface.launch(share=True) |