aquibmoin's picture
Update app.py
5137e56 verified
raw
history blame
10.9 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModel
from openai import OpenAI
import os
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from docx import Document
import io
import tempfile
from astroquery.nasa_ads import ADS
import pyvo as vo
# Load the NASA-specific bi-encoder model and tokenizer
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name)
bi_model = AutoModel.from_pretrained(bi_encoder_model_name)
# Set up OpenAI client
api_key = os.getenv('OPENAI_API_KEY')
client = OpenAI(api_key=api_key)
# Set up NASA ADS token
ADS.TOKEN = os.getenv('ADS_API_KEY') # Ensure your ADS API key is stored in environment variables
# Define system message with instructions
system_message = """
You are ExosAI, a helpful assistant specializing in Exoplanet research.
Your goal is to provide detailed, structured answers by following these guidelines:
- The central topic branches out into 3 science objectives.
- Each science objective branches out into 2 physical parameters, and each physical parameter branches out into 2 observables.
- Include details, provide scientific references, and make recommendations for observation parameters like wavelength, resolution, etc.
"""
def encode_text(text):
inputs = bi_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128)
outputs = bi_model(**inputs)
return outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten()
def retrieve_relevant_context(user_input, context_texts):
user_embedding = encode_text(user_input).reshape(1, -1)
context_embeddings = np.array([encode_text(text) for text in context_texts])
context_embeddings = context_embeddings.reshape(len(context_embeddings), -1)
similarities = cosine_similarity(user_embedding, context_embeddings).flatten()
most_relevant_idx = np.argmax(similarities)
return context_texts[most_relevant_idx]
def extract_keywords_with_gpt(user_input, max_tokens=100, temperature=0.3):
# Define a prompt to ask GPT-4 to extract keywords and important terms
keyword_prompt = f"Extract the most important keywords, scientific concepts, and parameters from the following user query:\n\n{user_input}"
# Call GPT-4 to extract keywords based on the user prompt
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert in identifying key scientific terms and concepts."},
{"role": "user", "content": keyword_prompt}
],
max_tokens=max_tokens,
temperature=temperature
)
# Extract the content from GPT-4's reply
extracted_keywords = response.choices[0].message.content.strip()
return extracted_keywords
def fetch_nasa_ads_references(prompt):
try:
# Use the entire prompt for the query
simplified_query = prompt
# Query NASA ADS for relevant papers
papers = ADS.query_simple(simplified_query)
if not papers or len(papers) == 0:
return [("No results found", "N/A", "N/A")]
# Include authors in the references
references = [
(
paper['title'][0],
", ".join(paper['author'][:3]) + (" et al." if len(paper['author']) > 3 else ""),
paper['bibcode']
)
for paper in papers[:5] # Limit to 5 references
]
return references
except Exception as e:
return [("Error fetching references", str(e), "N/A")]
def fetch_exoplanet_data():
# Connect to NASA Exoplanet Archive TAP Service
tap_service = vo.dal.TAPService("https://exoplanetarchive.ipac.caltech.edu/TAP")
# Query to fetch all columns from the pscomppars table
ex_query = """
SELECT TOP 10 pl_name, hostname, sy_snum, sy_pnum, discoverymethod, disc_year, disc_facility, pl_controv_flag, pl_orbper, pl_orbsmax, pl_rade, pl_bmasse, pl_orbeccen, pl_eqt, st_spectype, st_teff, st_rad, st_mass, ra, dec, sy_vmag
FROM pscomppars
"""
# Execute the query
qresult = tap_service.search(ex_query)
# Convert to a Pandas DataFrame
ptable = qresult.to_table()
exoplanet_data = ptable.to_pandas()
return exoplanet_data
def generate_response(user_input, relevant_context="", references=[], max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
if relevant_context:
combined_input = f"Context: {relevant_context}\nQuestion: {user_input}\nAnswer (please organize the answer in a structured format with topics and subtopics):"
else:
combined_input = f"Question: {user_input}\nAnswer (please organize the answer in a structured format with topics and subtopics):"
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": combined_input}
],
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty
)
# Append references to the response
if references:
response_content = response.choices[0].message.content.strip()
references_text = "\n\nADS References:\n" + "\n".join(
[f"- {title} by {authors} (Bibcode: {bibcode})" for title, authors, bibcode in references]
)
return f"{response_content}\n{references_text}"
return response.choices[0].message.content.strip()
def generate_data_insights(user_input, exoplanet_data, max_tokens=500, temperature=0.3):
"""
Generate insights by passing the user's input along with the exoplanet data to GPT-4.
"""
# Convert the dataframe to a readable format for GPT (e.g., CSV-style text)
data_as_text = exoplanet_data.to_csv(index=False) # CSV-style for better readability
# Create a prompt with the user query and the data sample
insights_prompt = (
f"Analyze the following user query and provide relevant insights based on the provided exoplanet data.\n\n"
f"User Query: {user_input}\n\n"
f"Exoplanet Data:\n{data_as_text}\n\n"
f"Please provide insights that are relevant to the user's query."
)
# Call GPT-4 to generate insights based on the data and user input
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert in analyzing astronomical data and generating insights."},
{"role": "user", "content": insights_prompt}
],
max_tokens=max_tokens,
temperature=temperature
)
# Extract and return GPT-4's insights
data_insights = response.choices[0].message.content.strip()
return data_insights
def export_to_word(response_content):
doc = Document()
doc.add_heading('AI Generated SCDD', 0)
for line in response_content.split('\n'):
doc.add_paragraph(line)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".docx")
doc.save(temp_file.name)
return temp_file.name
def chatbot(user_input, context="", use_encoder=False, max_tokens=150, temperature=0.7, top_p=0.9, frequency_penalty=0.5, presence_penalty=0.0):
if use_encoder and context:
context_texts = context.split("\n")
relevant_context = retrieve_relevant_context(user_input, context_texts)
else:
relevant_context = ""
# Fetch NASA ADS references using the full prompt
references = fetch_nasa_ads_references(user_input)
# Generate response from GPT-4
response = generate_response(user_input, relevant_context, references, max_tokens, temperature, top_p, frequency_penalty, presence_penalty)
# Export the response to a Word document
word_doc_path = export_to_word(response)
# Fetch exoplanet data
exoplanet_data = fetch_exoplanet_data()
# Generate insights based on the user query and exoplanet data
data_insights = generate_data_insights(user_input, exoplanet_data)
# Combine the response and the data insights
full_response = f"{response}\n\nInsights from Existing Data: {data_insights}"
# Embed Miro iframe
iframe_html = """
<iframe width="768" height="432" src="https://miro.com/app/live-embed/uXjVKuVTcF8=/?moveToViewport=-331,-462,5434,3063&embedId=710273023721" frameborder="0" scrolling="no" allow="fullscreen; clipboard-read; clipboard-write" allowfullscreen></iframe>
"""
mapify_button_html = """
<style>
.mapify-button {
background: linear-gradient(135deg, #1E90FF 0%, #87CEFA 100%);
border: none;
color: white;
padding: 15px 35px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
font-weight: bold;
margin: 20px 2px;
cursor: pointer;
border-radius: 25px;
transition: all 0.3s ease;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
.mapify-button:hover {
background: linear-gradient(135deg, #4682B4 0%, #1E90FF 100%);
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.3);
transform: scale(1.05);
}
</style>
<a href="https://mapify.so/app/new" target="_blank">
<button class="mapify-button">Create Mind Map on Mapify</button>
</a>
"""
return full_response, iframe_html, mapify_button_html, word_doc_path, exoplanet_data
iface = gr.Interface(
fn=chatbot,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your Science Goal here...", label="Prompt ExosAI"),
gr.Textbox(lines=5, placeholder="Enter some context here...", label="Context"),
gr.Checkbox(label="Use NASA SMD Bi-Encoder for Context"),
gr.Slider(50, 1000, value=150, step=10, label="Max Tokens"),
gr.Slider(0.0, 1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.0, 1.0, value=0.9, step=0.1, label="Top-p"),
gr.Slider(0.0, 1.0, value=0.5, step=0.1, label="Frequency Penalty"),
gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Presence Penalty")
],
outputs=[
gr.Textbox(label="ExosAI finds..."),
gr.HTML(label="Miro"),
gr.HTML(label="Generate Mind Map on Mapify"),
gr.File(label="Download SCDD", type="filepath"),
gr.Dataframe(label="Exoplanet Data Table")
],
title="ExosAI - NASA SMD SCDD AI Assistant [version-0.5a]",
description="ExosAI is an AI-powered assistant for generating and visualising HWO Science Cases",
)
iface.launch(share=True)